Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
2.
Eur J Endocrinol ; 189(3): 422-428, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37703313

RESUMEN

BACKGROUND: Several rare loss-of-function mutations of delta-like noncanonical notch ligand 1 (DLK1) have been described in non-syndromic children with familial central precocious puberty (CPP). OBJECTIVE: We investigated genetic abnormalities of DLK1 gene in a French cohort of children with idiopathic CPP. Additionally, we explored the pattern of DLK1 serum levels in patients with CPP and in healthy children at puberty, as well as in wild-type female mice. PATIENTS AND METHODS: Genomic DNA was obtained from 121 French index cases with CPP. Automated sequencing of the coding region of the DLK1 gene was performed in all cases. Serum DLK1 levels were measured by enzyme linked immunosorbent assay (ELISA) in 209 individuals, including 191 with normal pubertal development and in female mice during postnatal pubertal maturation. RESULTS: We identified 2 rare pathogenic DLK1 allelic variants: A stop gain variant (c.372C>A; p.Cys124X) and a start loss variant (c.2T>G; p.Met1?, or p.0) in 2 French girls with CPP. Mean serum DLK1 levels were similar between healthy children and idiopathic CPP children. In healthy individuals, DLK1 levels correlated with pubertal stage: In girls, DLK1 decreased between Tanner stages III and V, whereas in boys, DLK1 decreased between Tanner stages II and V (P = .008 and .016, respectively). Serum levels of Dlk1 also decreased in wild-type female mice. CONCLUSIONS: Novel loss-of-function mutations in DLK1 gene were identified in 2 French girls with CPP. Additionally, we demonstrated a pattern of dynamic changes in circulating DLK1 serum levels in humans and mice during pubertal stages, reinforcing the role of this factor in pubertal timing.


Asunto(s)
Pubertad Precoz , Animales , Niño , Femenino , Humanos , Masculino , Ratones , Alelos , Proteínas de Unión al Calcio/genética , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Membrana/genética , Mutación , Pubertad Precoz/genética
3.
Lancet Diabetes Endocrinol ; 11(8): 545-554, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385287

RESUMEN

BACKGROUND: Identification of genetic causes of central precocious puberty have revealed epigenetic mechanisms as regulators of human pubertal timing. MECP2, an X-linked gene, encodes a chromatin-associated protein with a role in gene transcription. MECP2 loss-of-function mutations usually cause Rett syndrome, a severe neurodevelopmental disorder. Early pubertal development has been shown in several patients with Rett syndrome. The aim of this study was to explore whether MECP2 variants are associated with an idiopathic central precocious puberty phenotype. METHODS: In this translational cohort study, participants were recruited from seven tertiary centres from five countries (Brazil, Spain, France, the USA, and the UK). Patients with idiopathic central precocious puberty were investigated for rare potentially damaging variants in the MECP2 gene, to assess whether MECP2 might contribute to the cause of central precocious puberty. Inclusion criteria were the development of progressive pubertal signs (Tanner stage 2) before the age of 8 years in girls and 9 years in boys and basal or GnRH-stimulated LH pubertal concentrations. Exclusion criteria were the diagnosis of peripheral precocious puberty and the presence of any recognised cause of central precocious puberty (CNS lesions, known monogenic causes, genetic syndromes, or early exposure to sex steroids). All patients included were followed up at the outpatient clinics of participating academic centres. We used high-throughput sequencing in 133 patients and Sanger sequencing of MECP2 in an additional 271 patients. Hypothalamic expression of Mecp2 and colocalisation with GnRH neurons were determined in mice to show expression of Mecp2 in key nuclei related to pubertal timing regulation. FINDINGS: Between Jun 15, 2020, and Jun 15, 2022, 404 patients with idiopathic central precocious puberty (383 [95%] girls and 21 [5%] boys; 261 [65%] sporadic cases and 143 [35%] familial cases from 134 unrelated families) were enrolled and assessed. We identified three rare heterozygous likely damaging coding variants in MECP2 in five girls: a de novo missense variant (Arg97Cys) in two monozygotic twin sisters with central precocious puberty and microcephaly; a de novo missense variant (Ser176Arg) in one girl with sporadic central precocious puberty, obesity, and autism; and an insertion (Ala6_Ala8dup) in two unrelated girls with sporadic central precocious puberty. Additionally, we identified one rare heterozygous 3'UTR MECP2 insertion (36_37insT) in two unrelated girls with sporadic central precocious puberty. None of them manifested Rett syndrome. Mecp2 protein colocalised with GnRH expression in hypothalamic nuclei responsible for GnRH regulation in mice. INTERPRETATION: We identified rare MECP2 variants in girls with central precocious puberty, with or without mild neurodevelopmental abnormalities. MECP2 might have a role in the hypothalamic control of human pubertal timing, adding to the evidence of involvement of epigenetic and genetic mechanisms in this crucial biological process. FUNDING: Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and the Wellcome Trust.


Asunto(s)
Pubertad Precoz , Síndrome de Rett , Animales , Niño , Femenino , Humanos , Masculino , Ratones , Brasil , Estudios de Cohortes , Hormona Folículo Estimulante , Hormona Liberadora de Gonadotropina , Hormona Luteinizante/metabolismo , Pubertad Precoz/genética , Pubertad Precoz/diagnóstico , Síndrome de Rett/genética , Síndrome de Rett/complicaciones
4.
Endocr Rev ; 44(2): 193-221, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35930274

RESUMEN

The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.


Asunto(s)
Enfermedades Hipotalámicas , Pubertad Precoz , Humanos , Pubertad Precoz/diagnóstico , Pubertad Precoz/genética , Hormona Liberadora de Gonadotropina/metabolismo , Enfermedades Hipotalámicas/complicaciones , Hipotálamo , Pubertad , Ubiquitina-Proteína Ligasas/metabolismo
6.
J Pediatr Endocrinol Metab ; 34(11): 1371-1377, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34298591

RESUMEN

OBJECTIVES: Longer-acting gonadotropin-releasing hormone analogs (GnRHa) have been widely used for central precocious puberty (CPP) treatment. However, the follow-up of patients after this treatment are still scarce. Our aim was to describe anthropometric, metabolic, and reproductive follow-up of CPP patients after treatment with leuprorelin acetate 3-month depot (11.25 mg). METHODS: Twenty-two female patients with idiopathic CPP were treated with leuprorelin acetate 3-month depot (11.25 mg). Their medical records were retrospectively evaluated regarding clinical, hormonal, and imaging aspects before, during, and after GnRHa treatment until adult height (AH). RESULTS: At the diagnosis of CPP, the mean chronological age (CA) was 8.2 ± 1.13 year, and mean bone age (BA) was 10.4 ± 1.4 year. Mean height SDS at the start and the end of GnRHa treatment was 1.6 ± 0.8 and 1.3 ± 0.9, respectively. The mean duration of GnRHa treatment was 2.8 ± 0.8 year. Mean predicted adult heights (PAH) at the start and the end of GnRH treatment was 153.2 ± 8.6 and 164.4 ± 7.3 cm, respectively (p<0.05). The mean AH was 163.2 ± 6.2 cm (mean SDS: 0.1 ± 1). All patients were within their target height (TH) range. There was a decrease in the percentage of overweight and obesity from the diagnosis until AH (39-19% p>0.05). At the AH, the insulin resistance and high LDL levels were identified in 3/17 patients (17.6%) and 2/21 patients (9.5%), respectively. The mean CA of menarche was 12.2 ± 0.5 years. At the AH, PCOS was diagnosed in one patient (4.8%). CONCLUSIONS: Long-term anthropometric, metabolic, and reproductive follow-up of patients with CPP treated with longer-acting GnRHa revealed effectivity, safety, and favorable outcomes.


Asunto(s)
Estatura/efectos de los fármacos , Hormona Liberadora de Gonadotropina/análogos & derivados , Leuprolida/uso terapéutico , Menarquia/efectos de los fármacos , Pubertad Precoz/tratamiento farmacológico , Reproducción/efectos de los fármacos , Niño , Femenino , Humanos , Leuprolida/administración & dosificación , Pubertad Precoz/mortalidad , Estudios Retrospectivos , Resultado del Tratamiento
7.
J Clin Endocrinol Metab ; 105(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32676665

RESUMEN

BACKGROUND: Central precocious puberty (CPP) has been associated with loss-of-function mutations in 2 paternally expressed genes (MKRN3 and DLK1). Rare defects in the DLk1 were also associated with poor metabolic phenotype at adulthood. OBJECTIVE: Our aim was to investigate genetic and biochemical aspects of DLK1 in a Spanish cohort of children with CPP without MKRN3 mutations. PATIENTS: A large cohort of children with idiopathic CPP (Spanish PUBERE Registry) was studied. Genomic deoxyribonucleic acid was obtained from 444 individuals (168 index cases) with CPP and their close relatives. Automatic sequencing of MKRN3 and DLK1 genes were performed. RESULTS: Five rare heterozygous mutations of MKRN3 were initially excluded in girls with familial CPP. A rare allelic deletion (c.401_404 + 8del) in the splice site junction of DLK1 was identified in a Spanish girl with sporadic CPP. Pubertal signs started at 5.7 years. Her metabolic profile was normal. Familial segregation analysis showed that the DLK1 deletion was de novo in the affected child. Serum DLK1 levels were undetectable (<0.4 ng/mL), indicating that the deletion led to complete lack of DLK1 production. Three others rare allelic variants of DLK1 were also identified (p.Asn134=; g.-222 C>A and g.-223 G>A) in 2 girls with CPP. However, both had normal DLK1 serum levels. CONCLUSION: Loss-of-function mutations of DLK1 represent a rare cause of CPP, reinforcing a significant role of this factor in human pubertal timing.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de la Membrana/genética , Pubertad Precoz/genética , Brasil , Proteínas de Unión al Calcio/sangre , Niño , Análisis Mutacional de ADN , Femenino , Humanos , Mutación con Pérdida de Función , Masculino , Proteínas de la Membrana/sangre , Pubertad Precoz/sangre , Pubertad Precoz/diagnóstico , Pubertad Precoz/metabolismo , Sitios de Empalme de ARN/genética , Ubiquitina-Proteína Ligasas/genética
8.
Clin Epigenetics ; 10(1): 146, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30466473

RESUMEN

BACKGROUND: Recent studies demonstrated that changes in DNA methylation (DNAm) and inactivation of two imprinted genes (MKRN3 and DLK1) alter the onset of female puberty. We aimed to investigate the association of DNAm profiling with the timing of human puberty analyzing the genome-wide DNAm patterns of peripheral blood leukocytes from ten female patients with central precocious puberty (CPP) and 33 healthy girls (15 pre- and 18 post-pubertal). For this purpose, we performed comparisons between the groups: pre- versus post-pubertal, CPP versus pre-pubertal, and CPP versus post-pubertal. RESULTS: Analyzing the methylome changes associated with normal puberty, we identified 120 differentially methylated regions (DMRs) when comparing pre- and post-pubertal healthy girls. Most of these DMRs were hypermethylated in the pubertal group (99%) and located on the X chromosome (74%). Only one genomic region, containing the promoter of ZFP57, was hypomethylated in the pubertal group. ZFP57 is a transcriptional repressor required for both methylation and imprinting of multiple genomic loci. ZFP57 expression in the hypothalamus of female rhesus monkeys increased during peripubertal development, suggesting enhanced repression of downstream ZFP57 target genes. Fourteen other zinc finger (ZNF) genes were related to the hypermethylated DMRs at normal puberty. Analyzing the methylome changes associated with CPP, we demonstrated that the patients with CPP exhibited more hypermethylated CpG sites compared to both pre-pubertal (81%) and pubertal (89%) controls. Forty-eight ZNF genes were identified as having hypermethylated CpG sites in CPP. CONCLUSION: Methylome profiling of girls at normal and precocious puberty revealed a widespread pattern of DNA hypermethylation, indicating that the pubertal process in humans is associated with specific changes in epigenetically driven regulatory control. Moreover, changes in methylation of several ZNF genes appear to be a distinct epigenetic modification underlying the initiation of human puberty.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/genética , Estudio de Asociación del Genoma Completo/métodos , Pubertad Precoz/genética , Factores de Transcripción/genética , Animales , Estudios de Casos y Controles , Niño , Epigénesis Genética , Femenino , Impresión Genómica , Humanos , Macaca mulatta , Linaje , Regiones Promotoras Genéticas , Proteínas Represoras , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA