RESUMEN
Rare earth elements (REEs) have been recently recognized as emergent pollutants in rivers. However, data regarding REE fluxes in association with either bed or suspended are scarce. To address this knowledge gap, we determined the concentrations and fluxes of La, Ce, Pr, Nd, Sm, Eu, Gd, Yb, Lu, Dy, Er, Ho, Tb, and Tm in bed and suspended sediment samples of a representative polluted Brazilian River. Sediment-associated data on REEs were placed in the context of corresponding background concentrations in soils under natural conditions along the Ipojuca watershed. Light rare earth elements (LREEs) comprised more than 94% of the total REEs associated with bed and suspended sediments. Suspended sediments accounted for more than 95% of the total REE flux. The Ce and Nd fluxes of about 7 t year-1 underscore the importance of including REEs in future estimations of global suspended sediment-associated element fluxes. In contrast, bedload often transported less than 0.0007 t year-1 of each REE. The main sources of pollution in the Ipojuca River are anthropogenic, likely due to domestic effluent and waste water from industrial and agricultural operations-major causes of sediment-associated Gd transport in polluted streams.
Asunto(s)
Sedimentos Geológicos/análisis , Metales de Tierras Raras/análisis , Contaminantes Químicos del Agua/análisis , Agricultura , Brasil , Monitoreo del Ambiente/métodos , Ríos/química , Suelo/química , Contaminantes del Suelo/análisisRESUMEN
Determining heavy metal background concentrations in soils is fundamental in order to support the monitoring of potentially contaminated areas. This is particularly important to areas submitted to high environmental impact where an intensive and local monitoring is required. To this end, the aim of this study was to establish background concentrations and quality reference values (QRVs) for the heavy metals Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, As, and Hg in an environmentally impacted watershed from Brazil. Geochemical associations among Fe, Mn, and trace elements were also assessed to provide an alternative tool for establishing background concentrations. A total of one hundred and four samples comprised twenty-six composite soil samples from areas of native forest or minimal anthropic influence. Samples were digested (USEPA method 3051A), and the metals were determined by ICP-OES, except for As and Hg measured by atomic absorption spectrophotometer. Background concentrations of heavy metals in soils had the following decreasing order: Fe > Mn > Zn > Cr > Pb > Ni > Cu > As > Cd > Hg. These values were usually lower than those observed in the international and national literature. The QRVs for Ipojuca watershed followed the order (mg kg(-1)) Fe (13,020.40) > Mn (91.80) > Zn (30.12) > Cr (15.00) > Pb (13.12) > Cu (3.53) > Ni (3.30) > As (0.51) > Cd (0.08) > Hg (0.04). Significant correlation among Fe, Mn, and heavy metals shows that solubilization by the method 3051A provides a reasonable estimate for predicting background concentrations for Cd, Cr, and Cu as well as Zn, Cr, Cu, and Ni.
Asunto(s)
Monitoreo del Ambiente/estadística & datos numéricos , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Brasil , Monitoreo del Ambiente/métodos , Valores de Referencia , Espectrofotometría AtómicaRESUMEN
Data regarding trace element concentrations and fluxes in suspended sediments and bedload are scarce. To fill this gap and meet the international need to include polluted rivers in future world estimation of trace element fluxes, this study aimed to determine the trace element fluxes in suspended sediment and bedload of an environmentally impacted river in Brazil. Water, suspended sediment, and bedload from both the upstream and the downstream cross sections were collected. To collect both the suspended sediment and water samples, we used the US DH-48. Bedload measurements were carried out using the US BLH 84 sampler. Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma (ICP-OES). As and Hg were determined by an atomic absorption spectrophotometer (AA-FIAS). The suspended sediments contributed more than 99 % of the trace element flux. By far Pb and to a less extent Zn at the downstream site represents major concerns. The yields of Pb and Zn in suspended sediments were 4.20 and 2.93 kg km(2) year(-1), respectively. These yields were higher than the values reported for Pb and Zn for Tuul River (highly impacted by mining activities), 1.60 and 1.30 kg km(2) year(-1), respectively, as well as the Pb yield (suspended + dissolved) to the sea of some Mediterranean rivers equal to 3.4 kg km(2) year(-1). Therefore, the highest flux and yield of Pb and Zn in Ipojuca River highlighted the importance to include medium and small rivers-often overlooked in global and regional studies-in the future estimation of world trace element fluxes in order to protect estuaries and coastal zones.