RESUMEN
BACKGROUND: TolT was originally described as a Trypanosoma cruzi molecule that accumulated on the trypomastigote flagellum bearing similarity to bacterial TolA colicins receptors. Preliminary biochemical studies indicated that TolT resolved in SDS-PAGE as ~3-5 different bands with sizes between 34 and 45 kDa, and that this heterogeneity could be ascribed to differences in polypeptide glycosylation. However, the recurrent identification of TolT-deduced peptides, and variations thereof, in trypomastigote proteomic surveys suggested an intrinsic TolT complexity, and prompted us to undertake a thorough reassessment of this antigen. METHODS/PRINCIPLE FINDINGS: Genome mining exercises showed that TolT constitutes a larger-than-expected family of genes, with at least 12 polymorphic members in the T. cruzi CL Brener reference strain and homologs in different trypanosomes. According to structural features, TolT deduced proteins could be split into three robust groups, termed TolT-A, TolT-B, and TolT-C, all of them showing marginal sequence similarity to bacterial TolA proteins and canonical signatures of surface localization/membrane association, most of which were herein experimentally validated. Further biochemical and microscopy-based characterizations indicated that this grouping may have a functional correlate, as TolT-A, TolT-B and TolT-C molecules showed differences in their expression profile, sub-cellular distribution, post-translational modification(s) and antigenic structure. We finally used a recently developed fluorescence magnetic beads immunoassay to validate a recombinant protein spanning the central and mature region of a TolT-B deduced molecule for Chagas disease serodiagnosis. CONCLUSION/SIGNIFICANCE: This study unveiled an unexpected genetic and biochemical complexity within the TolT family, which could be exploited for the development of novel T. cruzi biomarkers with diagnostic/therapeutic applications.
Asunto(s)
Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Polimorfismo Genético , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Biología Computacional , Glicosilación , Inmunoensayo , Proteínas de la Membrana/clasificación , Proteínas Protozoarias/clasificaciónRESUMEN
The surface coat of Trypanosoma cruzi is covered with glycosylphosphatidylinositol (GPI)-anchored glycoproteins (GAGPs) that contribute to parasite protection and to the establishment of a persistent infection in both the insect vector and the mammalian host. Multiple GAGPs that vary by amino acid sequence and/or posttranslational modifications are co-expressed on the parasite surface coat, hence curtailing structural/functional analyses on these molecules. Studies in our lab have indicated that GAGP-tagged variants expressed by transfected parasites undergo analogous posttranslational processing than endogenous ones and therefore constitute suitable tools to overcome these limitations. In this chapter, we detail the entire methodological pipeline for the efficient homologous expression of GAGPs in T. cruzi: from a simple strategy for the simultaneously cloning and tagging of the gene of interest to the biochemical validation of the parasite-expressed product.
Asunto(s)
Proteínas Ligadas a GPI/genética , Proteínas Protozoarias/genética , Trypanosoma cruzi/genética , Enfermedad de Chagas/parasitología , Clonación Molecular/métodos , Expresión Génica , Humanos , Proteínas Recombinantes/genética , Transfección/métodosRESUMEN
Trypanosoma cruzi, the protozoan agent of Chagas disease, has evolved an innovative metabolic pathway by which protective sialic acid (SA) residues are scavenged from host sialylglycoconjugates and transferred onto parasite surface mucin-like molecules (or surface glycoconjugates from host target cells) by means of a unique trans-sialidase (TS) enzyme. TS-induced changes in the glycoprotein sialylation profile of both parasite and host cells are crucial for the establishment of a persistent T. cruzi infection and for the development of Chagas disease-associated pathogenesis. In this chapter, we describe a novel metabolic labeling method developed in our labs that enables straightforward identification and molecular characterization of SA acceptors of the TS-catalyzed reaction.
Asunto(s)
Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/fisiología , Animales , Western Blotting/métodos , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/parasitología , Citometría de Flujo/métodos , Técnica del Anticuerpo Fluorescente/métodos , Interacciones Huésped-Parásitos , Humanos , Redes y Vías Metabólicas , Coloración y Etiquetado/métodos , Trypanosoma cruzi/enzimologíaRESUMEN
BACKGROUND: TSSA (Trypomastigote Small Surface Antigen) is an antigenic, adhesion molecule displayed on the surface of Trypanosoma cruzi trypomastigotes. TSSA displays substantial sequence identity to members of the TcMUC gene family, which code for the trypomastigote mucins (tGPI-mucins). In addition, TSSA bears sequence polymorphisms among parasite strains; and two TSSA variants expressed as recombinant molecules (termed TSSA-CL and TSSA-Sy) were shown to exhibit contrasting features in their host cell binding and signaling properties. METHODS/PRINCIPLE FINDINGS: Here we used a variety of approaches to get insights into TSSA structure/function. We show that at variance with tGPI-mucins, which rely on their extensive O-glycoslylation to achieve their protective function, TSSA seems to be displayed on the trypomastigote coat as a hypo-glycosylated molecule. This has a functional correlate, as further deletion mapping experiments and cell binding assays indicated that exposition of at least two peptidic motifs is critical for the engagement of the 'adhesive' TSSA variant (TSSA-CL) with host cell surface receptor(s) prior to trypomastigote internalization. These motifs are not conserved in the 'non-adhesive' TSSA-Sy variant. We next developed transgenic lines over-expressing either TSSA variant in different parasite backgrounds. In strict accordance to recombinant protein binding data, trypomastigotes over-expressing TSSA-CL displayed improved adhesion and infectivity towards non-macrophagic cell lines as compared to those over-expressing TSSA-Sy or parental lines. These phenotypes could be specifically counteracted by exogenous addition of peptides spanning the TSSA-CL adhesion motifs. In addition, and irrespective of the TSSA variant, over-expression of this molecule leads to an enhanced trypomastigote-to-amastigote conversion, indicating a possible role of TSSA also in parasite differentiation. CONCLUSION/SIGNIFICANCE: In this study we provided novel evidence indicating that TSSA plays an important role not only on the infectivity and differentiation of T. cruzi trypomastigotes but also on the phenotypic variability displayed by parasite strains.
Asunto(s)
Antígenos de Protozoos/química , Antígenos de Superficie/química , Mucinas/metabolismo , Trypanosoma cruzi/patogenicidad , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/genética , Antígenos de Superficie/genética , Diferenciación Celular , Enfermedad de Chagas/parasitología , Chlorocebus aethiops , Regulación de la Expresión Génica , Genes Protozoarios , Células HeLa , Humanos , Proteínas Recombinantes/química , Trypanosoma cruzi/genética , Células VeroRESUMEN
The trypomastigote small surface antigen (TSSA) is a mucin-like molecule from Trypanosoma cruzi, the etiological agent of Chagas disease, which displays amino acid polymorphisms in parasite isolates. TSSA expression is restricted to the surface of infective cell-derived trypomastigotes, where it functions as an adhesin and engages surface receptors on the host cell as a prerequisite for parasite internalization. Previous results have established TSSA-CL, the isoform encoded by the CL Brener clone, as an appealing candidate for use in serology-based diagnostics for Chagas disease. Here, we used a combination of peptide- and recombinant protein-based tools to map the antigenic structure of TSSA-CL at maximal resolution. Our results indicate the presence of different partially overlapping B-cell epitopes clustering in the central portion of TSSA-CL, which contains most of the polymorphisms found in parasite isolates. Based on these results, we assessed the serodiagnostic performance of a 21-amino-acid-long peptide that spans TSSA-CL major antigenic determinants, which was similar to the performance of the previously validated glutathione S-transferase (GST)-TSSA-CL fusion molecule. Furthermore, the tools developed for the antigenic characterization of the TSSA antigen were also used to explore other potential diagnostic applications of the anti-TSSA humoral response in Chagasic patients. Overall, our present results provide additional insights into the antigenic structure of TSSA-CL and support this molecule as an excellent target for molecular intervention in Chagas disease.
Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Enfermedad de Chagas/diagnóstico , Trypanosoma cruzi/química , Trypanosoma cruzi/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/química , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , Secuencia de Aminoácidos , Enfermedad de Chagas/congénito , Enfermedad de Chagas/inmunología , Mapeo Epitopo , Epítopos de Linfocito B , Glutatión Transferasa , Humanos , Mapeo Peptídico , Péptidos/inmunología , Análisis por Matrices de Proteínas , Estructura Terciaria de Proteína , Curva ROC , Proteínas Recombinantes de Fusión/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/genéticaRESUMEN
BACKGROUND: TcSMUG L products were recently identified as novel mucin-type glycoconjugates restricted to the surface of insect-dwelling epimastigote forms of Trypanosoma cruzi, the etiological agent of Chagas disease. The remarkable conservation of their predicted mature N-terminal region, which is exposed to the extracellular milieu, suggests that TcSMUG L products may be involved in structural and/or functional aspects of the interaction with the insect vector. METHODOLOGY AND PRINCIPAL FINDINGS: Here, we investigated the putative roles of TcSMUG L mucins in both in vivo development and ex vivo attachment of epimastigotes to the luminal surface of the digestive tract of Rhodnius prolixus. Our results indicate that the exogenous addition of TcSMUG L N-terminal peptide, but not control T. cruzi mucin peptides, to the infected bloodmeal inhibited the development of parasites in R. prolixus in a dose-dependent manner. Pre-incubation of insect midguts with the TcSMUG L peptide impaired the ex vivo attachment of epimastigotes to the luminal surface epithelium, likely by competing out TcSMUG L binding sites on the luminal surface of the posterior midgut, as revealed by fluorescence microscopy. CONCLUSION AND SIGNIFICANCE: Together, these observations indicate that TcSMUG L mucins are a determinant of both adhesion of T. cruzi epimastigotes to the posterior midgut epithelial cells of the triatomine, and the infection of the insect vector, R. prolixus.
Asunto(s)
Mucinas/metabolismo , Rhodnius/parasitología , Trypanosoma cruzi/metabolismo , Animales , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/transmisión , Insectos Vectores/parasitologíaRESUMEN
The post genomic era revealed the need for developing better performing, easier to use and more sophisticated genetic manipulation tools for the study of Trypanosoma cruzi, the etiological agent of Chagas disease. In this work a series of plasmids that allow genetic manipulation of this protozoan parasite were developed. First of all we focused on useful tools to establish selection strategies for different strains and which can be employed as expression vectors. On the other hand molecular building blocks in the form of diverse selectable markers, modifiable fluorescent protein and epitope-tag coding sequences were produced. Both types of modules were harboured in backbone molecules conceived to offer multiple construction and sub-cloning strategies. These can be used to confer new properties to already available genetic manipulation tools or as starting points for whole novel designs. The performance of each plasmid and building block was determined independently. For illustration purposes, some simple direct practical applications were conducted.
Asunto(s)
Ingeniería Genética/métodos , Vectores Genéticos , Trypanosoma cruzi/genética , Biología Computacional , ADN Protozoario , Plásmidos/genética , TransfecciónRESUMEN
Trypanosoma cruzi, the etiological agent of Chagas' disease, is an early divergent eukaryote in which control of gene expression relies mainly in post-transcriptional mechanisms. Transcription levels are globally up and down regulated during the transition between proliferating and non-proliferating life-cycle stages. In this work we characterized a nuclear adenylate kinase isoform (TcADKn) that is involved in ribosome biogenesis. Nuclear adenylate kinases have been recently described in a few organisms, being all related to RNA metabolism. Depending on active transcription and translation, TcADKn localizes in the nucleolus or the cytoplasm. A non-canonical nuclear localization signal was mapped towards the N-terminal of the protein, being the phosphate-binding loop essential for its localization. In addition, TcADKn nuclear exportation depends on the nuclear exportation adapter CRM1. TcADKn nuclear shuttling is governed by nutrient availability, oxidative stress and by the equivalent in T. cruzi of the mammalian TOR (Target of Rapamycin) pathway. One of the biological functions of TcADKn is ribosomal 18S RNA processing by direct interaction with ribosomal protein TcRps14. Finally, TcADKn expression is regulated by its 3' UTR mRNA. Depending on extracellular conditions, cells modulate protein translation rates regulating ribosome biogenesis and nuclear adenylate kinases are probably key components in these processes.
Asunto(s)
Adenilato Quinasa/genética , Adenilato Quinasa/metabolismo , Trypanosoma cruzi/enzimología , Transporte Activo de Núcleo Celular , Regulación de la Expresión Génica , Isoenzimas/genética , Isoenzimas/metabolismo , Unión Proteica , Señales de Clasificación de Proteína , Procesamiento Postranscripcional del ARN , ARN Ribosómico 18S/metabolismo , Proteínas Ribosómicas/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismoRESUMEN
The mammalian TOR pathway ("Target Of Rapamycin") is a regulatory protein network involved in a wide range of processes including cell growth and differentiation, providing a functional switch between anabolic and catabolic cell metabolism. Trypanosoma cruzi, the etiologic agent of Chagas disease, has a complex life cycle with different morphological stages in various hosts. This life cycle implies that parasites have to deal with fluctuations in the extracellular medium that should be detected and counteracted adapting their metabolism. A candidate to be the mediator between the receptors / sensors of the environment and cellular adaptive response is the TOR pathway. In this paper we integrate the bibliographic data of the TOR pathway in trypanosomatids by in silico analysis (computer simulation of biological structures and processes) of the parasite's genome. Possible effectors and processes regulated by this metabolic pathway are also proposed. Given that the information on the mechanisms of signal transduction in trypanosomatids is scarce, we consider the model presented in this work may be a reference for future experimental work.
Asunto(s)
Enfermedad de Chagas/parasitología , Serina-Treonina Quinasas TOR/genética , Trypanosoma cruzi/genética , Animales , Simulación por Computador , Estadios del Ciclo de Vida , Mamíferos/genética , Redes y Vías Metabólicas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Trypanosoma cruzi is wrapped by a dense coat of mucin-type molecules encoded by complex gene families termed TcSMUG and TcMUC, which are expressed in the insect- and mammal-dwelling forms of the parasite, respectively. Here, we dissect the contribution of distinct post-translational modifications on the trafficking of these glycoconjugates. In vivo tracing and characterization of tagged-variants expressed by transfected epimastigotes indicate that although the N-terminal signal peptide is responsible for targeting TcSMUG products to the endoplasmic reticulum (ER), the glycosyl phosphatidylinositol (GPI)-anchor likely functions as a forward transport signal for their timely progression along the secretory pathway. GPI-minus variants accumulate in the ER, with only a minor fraction being ultimately released to the medium as anchorless products. Secreted products, but not ER-accumulated ones, display several diagnostic features of mature mucin-type molecules including extensive O-type glycosylation, Galf-based epitopes recognized by monoclonal antibodies, and terminal Galp residues that become readily sialylated upon addition of parasite trans-sialidases. Processing of N-glycosylation site(s) is dispensable for the overall TcSMUG mucin-type maturation and secretion. Despite undergoing different O-glycosylation elaboration, TcMUC reporters yielded quite similar results, thus indicating that (i) molecular trafficking signals are structurally and functionally conserved between mucin families, and (ii) TcMUC and TcSMUG products are recognized and processed by a distinct repertoire of stage-specific glycosyltransferases. Thus, using the fidelity of a homologous expression system, we have defined some biosynthetic aspects of T. cruzi mucins, key molecules involved in parasite protection and virulence.
Asunto(s)
Proteínas Ligadas a GPI/metabolismo , Mucinas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/metabolismo , Secuencia de Aminoácidos , Proteínas Ligadas a GPI/genética , Glicosilación , Datos de Secuencia Molecular , Mucinas/genética , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteínas Protozoarias/genética , Eliminación de SecuenciaRESUMEN
La vía TOR ("Target Of Rapamycin") de mamíferos es una red proteica de regulación para una amplia gama de procesos involucrados en el crecimiento y la diferenciación celular, constituyendo un interruptor funcional entre el metabolismo anabólico y catabólico de la célula. El Trypanosoma cruzi, agente etiológico de la enfermedad de Chagas, tiene un ciclo de vida muy complejo con diferentes estadios morfológicos en varios hospedadores. Este ciclo de vida implica que los parásitos enfrentan grandes fluctuaciones en el medio extracelular que deben ser detectadas y a las cuales deben responder adaptando su metabolismo. Un candidato a ser el mediador entre los receptores/sensores del medio y la respuesta adaptativa celular es la vía TOR. En este trabajo integramos los datos bibliográficos de la vía TOR de organismos tripanosomátidos con un análisis in silico (simulación computacional de procesos o estructuras biológicas) del genoma del parásito. Se proponen además posibles efectores y procesos regulados por esta ruta metabólica. Teniendo en cuenta que existe muy poca información sobre los mecanismos de transducción de señales en tripanosomátidos, consideramos que el mapa presentado en este trabajo puede ser una referencia para futuros trabajos experimentales.(AU)
The mammalian TOR pathway ("Target Of Rapamycin") is a regulatory protein network involved in a wide range of processes including cell growth and differentiation, providing a functional switch between anabolic and catabolic cell metabolism. Trypanosoma cruzi, the etiologic agent of Chagas disease, has a complex life cycle with different morphological stages in various hosts. This life cycle implies that parasites have to deal with fluctuations in the extracellular medium that should be detected and counteracted adapting their metabolism. A candidate to be the mediator between the receptors / sensors of the environment and cellular adaptive response is the TOR pathway. In this paper we integrate the bibliographic data of the TOR pathway in trypanosomatids by in silico analysis (computer simulation of biological structures and processes) of the parasites genome. Possible effectors and processes regulated by this metabolic pathway are also proposed. Given that the information on the mechanisms of signal transduction in trypanosomatids is scarce, we consider the model presented in this work may be a reference for future experimental work.(AU)
Asunto(s)
Animales , Enfermedad de Chagas/parasitología , Serina-Treonina Quinasas TOR/genética , Trypanosoma cruzi/genética , Simulación por Computador , Estadios del Ciclo de Vida , Mamíferos/genética , Redes y Vías Metabólicas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
La vía TOR ("Target Of Rapamycin") de mamíferos es una red proteica de regulación para una amplia gama de procesos involucrados en el crecimiento y la diferenciación celular, constituyendo un interruptor funcional entre el metabolismo anabólico y catabólico de la célula. El Trypanosoma cruzi, agente etiológico de la enfermedad de Chagas, tiene un ciclo de vida muy complejo con diferentes estadios morfológicos en varios hospedadores. Este ciclo de vida implica que los parásitos enfrentan grandes fluctuaciones en el medio extracelular que deben ser detectadas y a las cuales deben responder adaptando su metabolismo. Un candidato a ser el mediador entre los receptores/sensores del medio y la respuesta adaptativa celular es la vía TOR. En este trabajo integramos los datos bibliográficos de la vía TOR de organismos tripanosomátidos con un análisis in silico (simulación computacional de procesos o estructuras biológicas) del genoma del parásito. Se proponen además posibles efectores y procesos regulados por esta ruta metabólica. Teniendo en cuenta que existe muy poca información sobre los mecanismos de transducción de señales en tripanosomátidos, consideramos que el mapa presentado en este trabajo puede ser una referencia para futuros trabajos experimentales.
The mammalian TOR pathway ("Target Of Rapamycin") is a regulatory protein network involved in a wide range of processes including cell growth and differentiation, providing a functional switch between anabolic and catabolic cell metabolism. Trypanosoma cruzi, the etiologic agent of Chagas disease, has a complex life cycle with different morphological stages in various hosts. This life cycle implies that parasites have to deal with fluctuations in the extracellular medium that should be detected and counteracted adapting their metabolism. A candidate to be the mediator between the receptors / sensors of the environment and cellular adaptive response is the TOR pathway. In this paper we integrate the bibliographic data of the TOR pathway in trypanosomatids by in silico analysis (computer simulation of biological structures and processes) of the parasite's genome. Possible effectors and processes regulated by this metabolic pathway are also proposed. Given that the information on the mechanisms of signal transduction in trypanosomatids is scarce, we consider the model presented in this work may be a reference for future experimental work.
Asunto(s)
Animales , Enfermedad de Chagas/parasitología , Serina-Treonina Quinasas TOR/genética , Trypanosoma cruzi/genética , Simulación por Computador , Estadios del Ciclo de Vida , Redes y Vías Metabólicas , Mamíferos/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
TSSA (trypomastigote small surface antigen) is a polymorphic mucin-like molecule displayed on the surface of Trypanosoma cruzi trypomastigote forms. To evaluate its functional properties, we undertook comparative biochemical and genetic approaches on isoforms present in parasite stocks from extant evolutionary lineages (CL Brener and Sylvio X-10). We show that CL Brener TSSA, but not the Sylvio X-10 counterpart, exhibits dose-dependent and saturable binding towards non-macrophagic cell lines. This binding triggers Ca(2+)-based signalling responses in the target cell while providing an anchor for the invading parasite. Accordingly, exogenous addition of either TSSA-derived peptides or specific antibodies significantly inhibits invasion of CL Brener, but not Sylvio X-10, trypomastigotes. Non-infective epimastigote forms, which do not express detectable levels of TSSA, were stably transfected with TSSA cDNA from either parasite stock. Although both transfectants produced a surface-associated mucin-like TSSA product, epimastigotes expressing CL Brener TSSA showed a ~2-fold increase in their attachment to mammalian cells. Overall, these findings indicate that CL Brener TSSA functions as a parasite adhesin, engaging surface receptor(s) and inducing signalling pathways on the host cell as a prerequisite for parasite internalization. More importantly, the contrasting functional features of TSSA isoforms provide one appealing mechanism underlying the differential infectivity of T. cruzi stocks.
Asunto(s)
Trypanosoma cruzi/patogenicidad , Glicoproteínas Variantes de Superficie de Trypanosoma/fisiología , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Células HEK293 , Humanos , Datos de Secuencia Molecular , Unión Proteica/fisiología , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Células VeroRESUMEN
Phytomonas are trypanosomatid plant parasites closely related to parasites that cause several human diseases. Little is known about the biology of these organisms including aspects of their metabolism. Arginine kinase (E.C. 2.7.3.3) is a phosphotransferase which catalyzes the interconversion between the phosphagen phosphoarginine and ATP. This enzyme is present in some invertebrates and is a homolog of another widely distributed phosphosphagen kinase, creatine kinase. In this work, a single canonical arginine kinase isoform was detected in Phytomonas Jma by enzymatic activity assays, PCR, and Western Blot. This arginine kinase is very similar to the canonical isoforms found in T. cruzi and T. brucei, presenting about 70% of amino acid sequence identity and a very similar molecular weight (40kDa). The Phytomonas phosphagen system seems to be very similar to T. cruzi, which has only one isoform, or T. brucei (three isoforms); establishing a difference with other trypanosomatids, such as Leishmania, which completely lacks phosphagen kinases, probably by the presence of the arginine-consuming enzyme, arginase. Finally, phylogenetic analysis suggests that Kinetoplastids' arginine kinase was acquired, during evolution, from the arthropod vectors by horizontal gene transfer.
Asunto(s)
Arginina Quinasa/metabolismo , Plantas/parasitología , Trypanosomatina/enzimología , Trypanosomatina/patogenicidad , Secuencia de Aminoácidos , Animales , Arginina Quinasa/clasificación , Arginina Quinasa/genética , Evolución Biológica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Trypanosomatina/clasificación , Trypanosomatina/genéticaRESUMEN
Trypanosoma cruzi, the aetiological agent of Chagas' disease, is exposed to extremely different environment conditions during its life cycle, and transporters are key molecules for its adaptive regulation. Amino acids, and particularly arginine, are essential components in T. cruzi metabolism. In this work, a novel T. cruzi arginine permease was identified by screening different members of the AAAP family (amino acid/auxin permeases) in yeast complementation assays using a toxic arginine analogue. One gene candidate, TcAAAP411, was characterized as a very specific, high-affinity, l-arginine permease. This work is the first identification of the molecular components involved specifically in amino acid transport in T. cruzi and provides new insights for further validation of the TcAAAP family as functional permeases.
Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Arginina/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/enzimología , Sistemas de Transporte de Aminoácidos Básicos/genética , Prueba de Complementación Genética , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMEN
Phosphoarginine is a cell energy buffer molecule synthesized by the enzyme arginine kinase. In Trypanosoma cruzi, the aetiological agent of Chagas' disease, 2 different isoforms were identified by data mining, but only 1 was expressed during the parasite life cycle. The digitonin extraction pattern of arginine kinase differed from those obtained for reservosomes, glycosomes and mitochondrial markers, and similar to the cytosolic marker. Immunofluorescence analysis revealed that although arginine kinase is localized mainly in unknown punctuated structures and also in the cytosol, it did not co-localize with any of the subcelular markers. This punctuated pattern has previously been observed in many cytosolic proteins of trypanosomatids. The knowledge of the subcellular localization of phosphagen kinases is a crucial issue to understand their physiological role in protozoan parasites.
Asunto(s)
Arginina Quinasa/aislamiento & purificación , Arginina Quinasa/metabolismo , Fracciones Subcelulares/metabolismo , Trypanosoma cruzi/enzimología , Animales , Arginina Quinasa/genética , Biología Computacional , Digitonina/química , Técnica del Anticuerpo Fluorescente , Isoenzimas/metabolismo , Estadios del Ciclo de Vida , Trypanosoma cruzi/genética , Trypanosoma cruzi/crecimiento & desarrolloRESUMEN
L-Cysteine and methionine are unique amino acids that act as sulfur donors in all organisms. In the specific case of Trypanosomatids, L-cysteine is particularly relevant as a substrate in the synthesis of trypanothione. Although it can be synthesized de novo, L-cysteine is actively transported in Trypanosoma cruzi epimastigote cells. L-Cysteine uptake is highly specific; none of the amino acids assayed yield significant differences in terms of transport rates. L-Cysteine is transported by epimastigote cells with a calculated apparent K(m) of 49.5 microM and a V(max) of about 13 pmol min(-1) per 10(7) cells. This transport is finely regulated by amino acid starvation, extracellular pH, and between the parasite growth phases. In addition, L-cysteine is incorporated post-translationally into proteins, suggesting its role in iron-sulfur core formation. Finally, the metabolic fates of Lcysteine were predicted in silico.
Asunto(s)
Cisteína/metabolismo , Regulación de la Expresión Génica , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Animales , Cinética , Modelos BiológicosRESUMEN
Trypanosoma cruzi is the etiological agent of Chagas disease, a disease endemic not only in Argentina but also in all of Latin America. T. cruzi presents several metabolic characteristics which are completely absent in its insect vectors and in mammalian hosts. Some of these differences were acquired after millions of years of adaptation to parasitism, during which this protozoan replaced many biosynthetic routes for transport systems. In the present review, we describe the advances in the knowledge of T. cruzi transport processes and the molecules involved. In particular, we focus on amino acid and polyamine transporters from the AAAP family (Amino Acid/Auxin Permeases), because they seem to be exclusive transporters from trypanosomatids. Taking into account that these permeases are completely absent in mammals, they could be considered as a potential target against Trypanosoma cruzi.
Asunto(s)
Aminoácidos/metabolismo , Enfermedad de Chagas/metabolismo , Poliaminas/metabolismo , Trypanosoma cruzi/metabolismo , Aminoácidos/química , Animales , Argentina , Transporte Biológico , Enfermedad de Chagas/terapia , Interacciones Huésped-Parásitos , Humanos , Poliaminas/química , Proteínas Protozoarias/biosíntesisRESUMEN
El Trypanosoma cruzi es el agente causal de la enfermedad de Chagas, endémica en Argentina y en toda América Latina. Presenta numerosas características metabólicas diferenciales respecto a sus hospedadores insectos y mamíferos. Algunas de estas diferencias fueron consecuencia de millones de años de adaptación al parasitismo en los cuales estos organismos protozoarios reemplazaron, a lo largo de su evolución, muchas rutas metabólicas de biosíntesis por sistemas de transporte de metabolitos desde el hospedador. En esta revisión se describen los avances en el conocimiento de los sistemas de transporte tanto bioquímicos como también de las moléculas involucradas en dichos procesos. Se aborda con especial énfasis los transportadores de aminoácidos y poliaminas de T. cruzi de la familia AAAP (Amino Acid/Auxin Permeases) ya que parece ser exclusiva de los tripanosomátidos. Teniendo en cuenta que estas moléculas se encuentran completamente ausentes en mamíferos podrían ser consideradas como potenciales blancos contra el Trypanosoma cruzi.
Trypanosoma cruzi is the etiological agent of Chagas disease, a disease endemic not only in Argentina but also in all of Latinamerica. T. cruzi presents several metabolic characteristics which are completely absent in its insect vectors and in mammalian hosts. Some of these differences were acquired after millions of years of adaptation to parasitism, during which this protozoan replaced many biosynthetic routes for transport systems. In the present review, we describe the advances in the knowledge of T. cruzi transport processes and the molecules involved. In particular, we focus on aminoacid and polyamine transporters from the AAAP family (Amino Acid/Auxin Permeases), because they seem to be exclusive transporters from trypanosomatids. Taking into account that these permeases are completely absent in mammals, they could be considered as a potential target against Trypanosoma cruzi.
Asunto(s)
Animales , Humanos , Aminoácidos/metabolismo , Enfermedad de Chagas/metabolismo , Poliaminas/metabolismo , Trypanosoma cruzi/metabolismo , Argentina , Aminoácidos/química , Transporte Biológico , Enfermedad de Chagas/terapia , Interacciones Huésped-Parásitos , Poliaminas/química , Proteínas Protozoarias/biosíntesisRESUMEN
Nucleoside diphosphate kinases (NDPKs) are multifunctional enzymes involved mainly in the conservation of nucleotides and deoxynucleotides at intracellular levels. Here we report the characterization of two NDPKs from the protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas disease. TcNDPK1 and TcNDPK2 were biochemically characterized presenting different kinetic parameters and regulation mechanisms. NDPK activity was mainly detected in soluble fractions according to the digitonin extraction technique; however 20% of the activity remains insoluble at digitonin concentrations up to 5 mg ml(-1). TcNDPK1 is a short enzyme isoform, whereas TcNDPK2 is a long one containing a DM10 motif. In addition, two other putative NDPK genes (TcNPDK3 and TcNDPK4) were detected by data mining at the T. cruzi genome database. The large number and diversity of NDPK isoforms are in agreement with those previously observed for other T. cruzi phosphotransferases, such as adenylate kinases.