RESUMEN
Food allergy is on the rise, and preventive/therapeutic procedures are needed. We explored a preventive protocol for milk allergy with the oral administration of a Gly-m-Bd-30K soy-derived peptide that contains cross-reactive epitopes with bovine caseins. B/T-cross-reactive epitopes were mapped using milk-specific human sera and monoclonal antibodies on overlapping and recombinant peptides of Gly-m-Bd-30K by SPOT and cell proliferation assays. Bioinformatics tools were used to characterize epitopes on the 3D-modelled molecule, and to predict the binding to HLA alleles. The peptide was orally administrated to mice that were then IgE-sensitized to milk proteins. Immunodominant B-epitopes were mainly located on the surface of the Nt-fragment. The use of a soy-peptide-containing an immunodominant cross-reactive T-epitope, along with a single B epitope, prevents IgE-mediated milk sensitization through the induction of Th1-mediated immunity and induction of blocking IgG. The use of a safe soy-peptide may represent a promising alternative for preventing milk allergy.
Asunto(s)
Reacciones Cruzadas , Hipersensibilidad a la Leche/prevención & control , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/inmunología , Proteínas de Soja/inmunología , Administración Oral , Animales , Bovinos , Epítopos/inmunología , Humanos , Ratones , Hipersensibilidad a la Leche/inmunologíaRESUMEN
The present study evaluated four laticifer fluids as a novel source of peptidases capable of hydrolyzing proteins in cow's milk. The latex peptidases from Calotropis procera (CpLP), Cryptostegia grandiflora (CgLP), and Carica papaya (CapLP) were able to perform total hydrolysis of caseins after 30â¯min at pH 6.5, as confirmed by a significant reduction in the residual antigenicity. Casein hydrolysis by Plumeria rubra latex peptidases (PrLP) was negligible. Moreover, whey proteins were more resistant to proteolysis by latex peptidases; however, heat pretreatment of the whey proteins enhanced the degree of hydrolysis and reduced the residual antigenicity of the hydrolysates. The in vivo assays show that the cow's milk proteins hydrolysed by CgLP and CapLP exhibited no immune reactions in mice allergic to cow's milk, similar to a commercial partially hydrolysed formula. Thus, these peptidases are promising enzymes for the development of novel hypoallergenic formulas for children with a milk allergy.
Asunto(s)
Caseínas/metabolismo , Hipersensibilidad a la Leche/patología , Péptido Hidrolasas/metabolismo , Animales , Apocynaceae/enzimología , Calotropis/enzimología , Carica/enzimología , Caseínas/inmunología , Bovinos , Humanos , Hidrólisis , Látex/metabolismo , Masculino , Ratones , Leche/metabolismo , Hipersensibilidad a la Leche/inmunología , Hipersensibilidad a la Leche/veterinaria , Proteína de Suero de Leche/inmunología , Proteína de Suero de Leche/metabolismoRESUMEN
Exposure to cow's milk constitutes one of the most common causes of food allergy. In addition, exposure to soy proteins has become relevant in a restricted proportion of milk allergic pediatric patients treated with soy formulae as a dairy substitute, because of the cross-allergenicity described between soy and milk proteins. We have previously identified several cross-reactive allergens between milk and soy that may explain this intolerance. The purpose of the present work was to identify epitopes in the purified αS1-casein and the recombinant soy allergen Gly m 5.0101 (Gly m 5) using an α-casein-specific monoclonal antibody (1D5 mAb) through two different approaches for epitope mapping, to understand cross-reactivity between milk and soy. The 1D5 mAb was immobilized onto magnetic beads, incubated with the peptide mixture previously obtained by enzymatic digestion of the allergens, and the captured peptides were identified by MALDI-TOF MS analysis. On a second approach, the peptide mixture was resolved by RP-HPLC and immunodominant peptides were identified by dot blot with the mAb. Finally, recognized peptides were sequenced by MALDI-TOF MS. This novel MS based approach led us to identify and characterize four peptides on α-casein and three peptides on Gly m 5 with a common core motif. Information obtained from these cross-reactive epitopes allows us to gain valuable insight into the molecular mechanisms of cross-reactivity, to further develop new and more effective vaccines for food allergy.