Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Biol Int ; 48(10): 1533-1547, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38992896

RESUMEN

The aim of this study was to evaluate the effects of chrysin on the ventral prostate of spontaneously hypertensive rats (SHR). Ten-week-old male Wistar and SHR rats received 100 mg/kg/day of chrysin (TW and TSHR) or 200 µL/day of the dilution vehicle (CW and CSHR) for 70 days. After the treatment, the animals were euthanized and the prostates were dissected out, fixed, and processed for further morphological, immunohistochemical, and biochemical analyses. Blood was collected for serological analysis. Chrysin did not interfere with the blood pressure. Morphologically, the epithelial height increased in TW and decreased in TSHR. Stereology showed an increase in the epithelial and stromal relative frequency, and a decrease in the lumen of TW, whereas the epithelium in TSHR was reduced. Normal alveoli decreased, and hyperplastic alveoli had an increment in TW, whereas in TSHR normal alveoli increased and intense hyperplasia decreased. The secretion area was reduced in TW. Immunohistochemical analysis showed a smaller number of PCNA-positive cells in TW. Finally, the biochemical analysis showed a reduction in malondialdehyde, carbonylated proteins, superoxide dismutase, and catalase in TW and TSHR. We concluded that the chrysin effect is dependent on the context in which this flavonoid is employed. In normal conditions, the anabolic potential of the chrysin was favored, disrupting the morphology of the prostate. However, when used in animals predisposed to develop hyperplasia, this flavonoid attenuates the hyperplastic status, improving the morphology of the gland.


Asunto(s)
Flavonoides , Próstata , Hiperplasia Prostática , Animales , Masculino , Ratas , Presión Sanguínea/efectos de los fármacos , Flavonoides/farmacología , Próstata/efectos de los fármacos , Próstata/patología , Próstata/metabolismo , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/patología , Hiperplasia Prostática/metabolismo , Ratas Endogámicas SHR , Ratas Wistar , Superóxido Dismutasa/metabolismo
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(9): 7103-7115, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38643455

RESUMEN

Estrone (E1) constitutes the primary component in oral conjugated equine estrogens (CEEs) and serves as the principal estrogen precursor in the female circulation in the post-menopause. E1 induces endothelium-dependent vasodilation and activate PI3K/NO/cGMP signaling. To assess whether E1 mitigates vascular dysfunction associated with postmenopause and explore the underlying mechanisms, we examined the vascular effects of E1 in ovariectomized (OVX) rats, a postmenopausal experimental model. Blood pressure was measured using tail-cuff plethysmography, and aortic rings were isolated to assess responses to phenylephrine, acetylcholine (ACh), and sodium nitroprusside. Responses to ACh in rings pre-incubated with superoxide dismutase (SOD), catalase (CAT), or apocynin were also evaluated. Protein expression of SOD, CAT, NOX1, NOX2, and NOX4 was determined by Western blotting. E1 treatment resulted in decreased body weight and retroperitoneal fat, increased uterine weight, and prevented elevated blood pressure in the OVX group. Furthermore, E1 improved endothelium-dependent ACh vasodilation, activated compensatory antioxidant mechanisms - i.e. increased SOD and CAT antioxidant enzymes activity, and decreased NOX4 expression. This, in turn, helped prevent oxidative stress and endothelial dysfunction in OVX rats. Additionally, E1 treatment reversed the increased total LDL cholesterol observed in the OVX group. The findings underscore protective effects of E1 on the cardiovascular system, counteracting OVX-related oxidative stress and endothelial dysfunction in Wistar rats. E1 exhibits promising therapeutic benefits for managing cardiovascular health, particularly in postmenopausal conditions.


Asunto(s)
Endotelio Vascular , Estrona , NADPH Oxidasa 4 , Ovariectomía , Ratas Wistar , Especies Reactivas de Oxígeno , Vasodilatación , Animales , Femenino , NADPH Oxidasa 4/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Vasodilatación/efectos de los fármacos , Estrona/farmacología , Presión Sanguínea/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas
3.
Chem Biol Interact ; 351: 109743, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34774840

RESUMEN

Cannabidiol (CBD) is a natural cannabinoid present in the Cannabis sativa plant, widely prescribed as an anticonvulsant drug, especially for pediatric use. However, its effects on male reproduction are still little investigated. Therefore, the present study assessed the effects of CBD on the spermatogenesis and sperm quality. For this, twenty-one-day-old Swiss mice received CBD for 34 consecutive days by gavage at doses of either 15 or 30 mg/kg. Chronic exposure to CBD decreased the frequency of stages VII-VIII and XII of spermatogenesis and an increase in the frequency of stage IX were noted. Furthermore, the seminiferous epithelium height reduced at stage IX and increased at stage XII in both CBD-treated groups. There was a significant rise of sperm DNA damage, while no genotoxic effects were observed in leukocytes. The activities of superoxide dismutase and catalase decreased, while malondialdehyde levels increased in the sperm of mice treated with a higher dose of CBD. Mice exposed to 30 mg/kg of CBD showed a reduction in the mobile spermatozoa percentage and in curvilinear velocity, while straight line and average path velocity decreased in both treated groups. The number of acrosome-intact spermatozoa declined in the CBD 30 group, and the number of abnormal acrosomes raised in both CBD groups. On the other hand, the weight of reproductive organs, sperm count, and hormone levels were not affected by CBD treatment. These findings show that dysregulation of the endocannabinoid system by CBD can reduce sperm quality. The mechanisms responsible may be associated with disorders during spermatogenesis, especially during the final stages of nuclear remodelling and assembly of acrosome. However, changes in mitochondrial function, as well as the reduction on the antioxidant enzyme activities during epididymal transit, at least partly, may also be involved.


Asunto(s)
Cannabidiol/toxicidad , Espermatozoides/efectos de los fármacos , Acrosoma/efectos de los fármacos , Animales , Daño del ADN/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Motilidad Espermática/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Espermatozoides/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA