Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Respir Care ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013568

RESUMEN

BACKGROUND: PEEP is a cornerstone treatment for children with pediatric ARDS. Unfortunately, its titration is often performed solely by evaluating oxygen saturation, which can lead to inadequate PEEP level settings and consequent adverse effects. This study aimed to assess the impact of increasing PEEP on hemodynamics, respiratory system mechanics, and oxygenation in children with ARDS. METHODS: Children receiving mechanical ventilation and on pressure-controlled volume-guaranteed mode were prospectively assessed for inclusion. PEEP was sequentially changed to 5, 12, 10, 8 cm H2O, and again to 5 cm H2O. After 10 min at each PEEP level, hemodynamic, ventilatory, and oxygenation variables were collected. RESULTS: A total of 31 subjects were included, with median age and weight of 6 months and 6.3 kg, respectively. The main reasons for pediatric ICU admission were respiratory failure caused by acute viral bronchiolitis (45%) and community-acquired pneumonia (32%). Most subjects had mild or moderate ARDS (45% and 42%, respectively), with a median (interquartile range) oxygenation index of 8.4 (5.8-12.7). Oxygen saturation improved significantly when PEEP was increased. However, although no significant changes in blood pressure were observed, the median cardiac index at PEEP of 12 cm H2O was significantly lower than that observed at any other PEEP level (P = .001). Fourteen participants (45%) experienced a reduction in cardiac index of > 10% when PEEP was increased to 12 cm H2O. Also, the estimated oxygen delivery was significantly lower, at 12 cm H2O PEEP. Finally, respiratory system compliance significantly reduced when PEEP was increased. At a PEEP of 12 cm H2O, static compliance had a median reduction of 25% in relation to the initial assessment (PEEP of 5 cm H2O). CONCLUSIONS: Although it may improve arterial oxygen saturation, inappropriately high PEEP levels may reduce cardiac output, oxygen delivery, and respiratory system compliance in pediatric subjects with ARDS with low potential for lung recruitability.

2.
Respir Care ; 57(2): 273-81, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21762562

RESUMEN

BACKGROUND: Conventional mechanical ventilation (CMV) is fundamental in acute respiratory distress syndrome (ARDS) treatment. Inhaled nitric oxide (INO), an adjunctive therapy, has been used with ventilation in an attempt to improve oxygenation and reduce lung injury. OBJECTIVE: To analyze the early effects of low INO dose on oxygenation, oxidative stress, inflammatory, and histopathological lung injury in a rabbit model of acute lung injury (ALI). METHODS: This was a prospective, controlled, in vivo animal laboratory study. Forty rabbits were instrumented and ventilated at F(IO(2)) 1.0. ALI was induced by tracheal infusion of warm saline (30 mL/kg, 38°C) and lung oxidative stress was assessed by total antioxidant performance (TAP) assay. Animals were assigned to groups: control group (no. = 10, low tidal volume [V(T)] = 6 mL/kg, PEEP = 5 cm H(2)O), ALI without INO (no-INO group, no. = 10, low V(T) = 6 mL/kg, PEEP = 10 cm H(2)O), ALI plus INO (INO group, no. = 10, low V(T) = 6 mL/kg, PEEP = 10 cm H(2)O, INO = 5 ppm). Plateau pressure was limited to 30 cm H(2)O in all groups. Ten non-instrumented animals (healthy group) were studied for TAP assay. Ventilatory and hemodynamic parameters were recorded every 30 min for 4 hours. RESULTS: After lung injury, the instrumented groups were worse than the control group for P(aO(2)) (control group 438 ± 87 mm Hg, no-INO group 80 ± 13 mm Hg, INO group 81 ± 24 mm Hg, P < .001). The INO group showed decreased lung inflammation by leukocyte count in lung lavage fluid (no-INO group 4.8 ± 1.64, control group 0.16 ± 0.15, INO group 0.96 ± 0.35 polymorphonuclear cells × 10(6)/bronchoalveolar lavage fluid/lung, P < .001), decreased histopathological injury score (no-INO group 5 [range 1-16], INO group 2 [range 0-5], control group 0 [range 0-3], P < .001), and better lung protection against oxidative injury than the no-INO group (healthy group 68 ± 8.7, control group 66.4 ± 6.8, INO group 56.3 ± 5.1, no-INO group 45.9 ± 3.4 percent protection/g protein, P < .001). CONCLUSIONS: INO attenuates oxidative stress and histopathological and inflammatory lung injury in a saline-lavaged rabbit ALI model.


Asunto(s)
Lesión Pulmonar Aguda , Óxido Nítrico , Estrés Oxidativo/efectos de los fármacos , Oxígeno/metabolismo , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/terapia , Administración por Inhalación , Animales , Antioxidantes , Disponibilidad Biológica , Broncodilatadores/administración & dosificación , Broncodilatadores/farmacocinética , Quimioterapia Adyuvante , Relación Dosis-Respuesta a Droga , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Modelos Animales , Monitoreo Fisiológico , Óxido Nítrico/administración & dosificación , Óxido Nítrico/farmacocinética , Estudios Prospectivos , Conejos , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA