Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294379

RESUMEN

Space radiation is a notable hazard for long-duration human spaceflight1. Associated risks include cancer, cataracts, degenerative diseases2 and tissue reactions from large, acute exposures3. Space radiation originates from diverse sources, including galactic cosmic rays4, trapped-particle (Van Allen) belts5 and solar-particle events6. Previous radiation data are from the International Space Station and the Space Shuttle in low-Earth orbit protected by heavy shielding and Earth's magnetic field7,8 and lightly shielded interplanetary robotic probes such as Mars Science Laboratory and Lunar Reconnaissance Orbiter9,10. Limited data from the Apollo missions11-13 and ground measurements with substantial caveats are also available14. Here we report radiation measurements from the heavily shielded Orion spacecraft on the uncrewed Artemis I lunar mission. At differing shielding locations inside the vehicle, a fourfold difference in dose rates was observed during proton-belt passes that are similar to large, reference solar-particle events. Interplanetary cosmic-ray dose equivalent rates in Orion were as much as 60% lower than previous observations9. Furthermore, a change in orientation of the spacecraft during the proton-belt transit resulted in a reduction of radiation dose rates of around 50%. These measurements validate the Orion for future crewed exploration and inform future human spaceflight mission design.

2.
Life Sci Space Res (Amst) ; 39: 52-58, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945089

RESUMEN

We detect regular particle showers in several compact pixel detectors, distributed over the International Space Station. These showers are caused by high energy galactic cosmic rays, with energies often in the 10 s of TeV or higher. We survey the frequency of these events, their dependence on location on ISS, and their independence of the location of ISS, on its orbit. The Timepix detectors used allow individual particle tracks to be resolved, providing a possibility to perform physical analysis of shower events, which we demonstrate. In terms of radiation dosimetry, these showers indicate certain possible limitations of traditional dosimetric measures, in that (a) the dose measured in small sensor may be less than that received in a larger distribution of matter, such as a human and (b) the spatial and temporal extent of these events represents a regime of poorly documented biological response.


Asunto(s)
Radiación Cósmica , Monitoreo de Radiación , Vuelo Espacial , Humanos , Dosis de Radiación , Nave Espacial , Radiometría
3.
Life Sci Space Res (Amst) ; 39: 95-105, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945094

RESUMEN

Monitoring space radiation is of vital importance for risk reduction strategies in human space exploration. Radiation protection programs on Earth and in space rely on personal and area radiation monitoring instruments. Crew worn radiation detectors are crucial for successful crew radiation protection programs since they measure what each crewmember experiences in different shielding configurations within the space habitable volume. The Space Radiation Analysis Group at NASA Johnson Space Center investigated several compact, low power, real-time instruments for personal dosimetry. Following these feasibility studies, the Crew Active Dosimeter (CAD) has been chosen as a replacement for the legacy crew passive radiation detectors. The CAD device, based on direct ion storage technology, was developed by Mirion Dosimetry Services to meet the specified NASA design requirements for the International Space Station (ISS) and Artemis programs. After a successful Technology demonstration on ISS, the CAD has been implemented for ISS Crew operations since 2020. The current paper provides an overview of the CAD development, ISS results and comparison with the ISS Radiation Assessment Detector (RAD) and the Radiation Environment Monitor 2 (REM2) instruments.


Asunto(s)
Radiación Cósmica , Monitoreo de Radiación , Vuelo Espacial , Humanos , Nave Espacial , Dosímetros de Radiación , Radiometría , Monitoreo de Radiación/métodos , Dosis de Radiación
4.
Life Sci Space Res (Amst) ; 6: 69-78, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26256630

RESUMEN

Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.


Asunto(s)
Radiación Cósmica , Monitoreo de Radiación/instrumentación , Monitoreo de Radiación/métodos , Radiometría/métodos , Dosimetría Termoluminiscente/métodos , Diseño de Equipo , Dosis de Radiación , Vuelo Espacial , Nave Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA