Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
iScience ; 26(10): 107719, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37674984

RESUMEN

Little is known about the effects of high-fat diet (HFD)-induced obesity on resident colonic lamina propria (LP) macrophages (LPMs) function and metabolism. Here, we report that obesity and diabetes resulted in increased macrophage infiltration in the colon. These macrophages exhibited the residency phenotype CX3CR1hiMHCIIhi and were CD4-TIM4-. During HFD, resident colonic LPM exhibited a lipid metabolism gene expression signature that overlapped that used to define lipid-associated macrophages (LAMs). Via single-cell RNA sequencing, we identified a sub-cluster of macrophages, increased in HFD, that were responsible for the LAM signature. Compared to other macrophages in the colon, these cells were characterized by elevated glycolysis, phagocytosis, and efferocytosis signatures. CX3CR1hiMHCIIhi colonic resident LPMs had fewer lipid droplets (LDs) and decreased triacylglycerol (TG) content compared to equivalent cells in lean mice and exhibited increased phagocytic capacity, suggesting that HFD induces adaptive responses in LPMs to limit bacterial translocation.

2.
Immunity ; 55(1): 65-81.e9, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34767747

RESUMEN

Antigenic stimulation promotes T cell metabolic reprogramming to meet increased biosynthetic, bioenergetic, and signaling demands. We show that the one-carbon (1C) metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) regulates de novo purine synthesis and signaling in activated T cells to promote proliferation and inflammatory cytokine production. In pathogenic T helper-17 (Th17) cells, MTHFD2 prevented aberrant upregulation of the transcription factor FoxP3 along with inappropriate gain of suppressive capacity. MTHFD2 deficiency also promoted regulatory T (Treg) cell differentiation. Mechanistically, MTHFD2 inhibition led to depletion of purine pools, accumulation of purine biosynthetic intermediates, and decreased nutrient sensor mTORC1 signaling. MTHFD2 was also critical to regulate DNA and histone methylation in Th17 cells. Importantly, MTHFD2 deficiency reduced disease severity in multiple in vivo inflammatory disease models. MTHFD2 is thus a metabolic checkpoint to integrate purine metabolism with pathogenic effector cell signaling and is a potential therapeutic target within 1C metabolism pathways.


Asunto(s)
Inflamación/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Purinas/biosíntesis , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Animales , Diferenciación Celular , Citocinas/metabolismo , Metilación de ADN , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Activación de Linfocitos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Ratones , Ratones Transgénicos , Mutación/genética , Transducción de Señal
3.
PLoS One ; 15(11): e0241367, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33147241

RESUMEN

Epigenetics plays a fundamental role in cellular development and differentiation; epigenetic mechanisms, such as DNA methylation, are involved in gene regulation and the exquisite nuance of expression changes seen in the journey from pluripotency to final differentiation. Thus, DNA methylation as a marker of cell identify has the potential to reveal new insights into cell biology. We mined publicly available DNA methylation data with a machine-learning approach to identify differentially methylated loci between different white blood cell types. We then interrogated the DNA methylation and mRNA expression of candidate loci in CD4+, CD8+, CD14+, CD19+ and CD56+ fractions from 12 additional, independent healthy individuals (6 male, 6 female). 'Classic' immune cell markers such as CD8 and CD19 showed expected methylation/expression associations fitting with established dogma that hypermethylation is associated with the repression of gene expression. We also observed large differential methylation at loci which are not established immune cell markers; some of these loci showed inverse correlations between methylation and mRNA expression (such as PARK2, DCP2). Furthermore, we validated these observations further in publicly available DNA methylation and RNA sequencing datasets. Our results highlight the value of mining publicly available data, the utility of DNA methylation as a discriminatory marker and the potential value of DNA methylation to provide additional insights into cell biology and developmental processes.


Asunto(s)
Metilación de ADN/genética , Leucocitos Mononucleares/metabolismo , Adulto , Biomarcadores/metabolismo , Islas de CpG/genética , Epigénesis Genética , Femenino , Humanos , Masculino , Anotación de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados
4.
Nat Commun ; 11(1): 4107, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796836

RESUMEN

Foamy macrophages, which have prominent lipid droplets (LDs), are found in a variety of disease states. Toll-like receptor agonists drive triacylglycerol (TG)-rich LD development in macrophages. Here we explore the basis and significance of this process. Our findings indicate that LD development is the result of metabolic commitment to TG synthesis on a background of decreased fatty acid oxidation. TG synthesis is essential for optimal inflammatory macrophage activation as its inhibition, which prevents LD development, has marked effects on the production of inflammatory mediators, including IL-1ß, IL-6 and PGE2, and on phagocytic capacity. The failure of inflammatory macrophages to make PGE2 when TG-synthesis is inhibited is critical for this phenotype, as addition of exogenous PGE2 is able to reverse the anti-inflammatory effects of TG synthesis inhibition. These findings place LDs in a position of central importance in inflammatory macrophage activation.


Asunto(s)
Inflamación/metabolismo , Lipidómica/métodos , Triglicéridos/metabolismo , Animales , Células Cultivadas , Citometría de Flujo , Glucosa/metabolismo , Glicerol/metabolismo , Células HEK293 , Humanos , Metabolismo de los Lípidos/fisiología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Electrónica , Palmitatos/metabolismo , Análisis de Secuencia de ARN
5.
Cell Metab ; 31(2): 422-437.e5, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31883840

RESUMEN

Regulatory T cells (Tregs) subdue immune responses. Central to Treg activation are changes in lipid metabolism that support their survival and function. Fatty acid binding proteins (FABPs) are a family of lipid chaperones required to facilitate uptake and intracellular lipid trafficking. One family member, FABP5, is expressed in T cells, but its function remains unclear. We show that in Tregs, genetic or pharmacologic inhibition of FABP5 function causes mitochondrial changes underscored by decreased OXPHOS, impaired lipid metabolism, and loss of cristae structure. FABP5 inhibition in Tregs triggers mtDNA release and consequent cGAS-STING-dependent type I IFN signaling, which induces heightened production of the regulatory cytokine IL-10 and promotes Treg suppressive activity. We find evidence of this pathway, along with correlative mitochondrial changes in tumor infiltrating Tregs, which may underlie enhanced immunosuppression in the tumor microenvironment. Together, our data reveal that FABP5 is a gatekeeper of mitochondrial integrity that modulates Treg function.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/fisiología , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Línea Celular Tumoral , ADN Mitocondrial/metabolismo , Humanos , Interferón Tipo I/metabolismo , Interleucina-10/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/patología
6.
Cell Metab ; 30(2): 352-363.e8, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31130465

RESUMEN

How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis.


Asunto(s)
Macrófagos/metabolismo , Mitocondrias/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Poliaminas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Células Cultivadas , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteómica , Factor 5A Eucariótico de Iniciación de Traducción
7.
Nat Immunol ; 20(4): 420-432, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858618

RESUMEN

The adoption of Warburg metabolism is critical for the activation of macrophages in response to lipopolysaccharide. Macrophages stimulated with lipopolysaccharide increase their expression of nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in NAD+ salvage, and loss of NAMPT activity alters their inflammatory potential. However, the events that lead to the cells' becoming dependent on NAD+ salvage remain poorly defined. We found that depletion of NAD+ and increased expression of NAMPT occurred rapidly after inflammatory activation and coincided with DNA damage caused by reactive oxygen species (ROS). ROS produced by complex III of the mitochondrial electron-transport chain were required for macrophage activation. DNA damage was associated with activation of poly(ADP-ribose) polymerase, which led to consumption of NAD+. In this setting, increased NAMPT expression allowed the maintenance of NAD+ pools sufficient for glyceraldehyde-3-phosphate dehydrogenase activity and Warburg metabolism. Our findings provide an integrated explanation for the dependence of inflammatory macrophages on the NAD+ salvage pathway.


Asunto(s)
Daño del ADN , Macrófagos/metabolismo , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acrilamidas/farmacología , Animales , Células Cultivadas , Citocinas/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Activación de Macrófagos , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Piperidinas/farmacología
8.
Immunol Cell Biol ; 97(3): 268-278, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30779212

RESUMEN

Macrophages are a critical component of the innate immune response, and compose the first response to perturbations in tissue homeostasis. Their unique ability to dynamically integrate diverse stimuli underlies their important role in the healing response from first insult to re-establishment of tissue homeostasis. While the roles of macrophages in tissue repair have been well-described in vitro and in vivo, the influence of cellular metabolism on macrophage function during tissue repair remains an unexplored area of immunometabolism. In this review, we will explore the unique metabolic requirements of inflammatory and anti-inflammatory macrophages and the potential contribution of macrophage metabolism to each phase of wound healing.


Asunto(s)
Metabolismo Energético , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Biomarcadores , Microambiente Celular/genética , Microambiente Celular/inmunología , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Homeostasis , Humanos , Inflamación/etiología , Inflamación/metabolismo , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Redes y Vías Metabólicas , Transducción de Señal , Cicatrización de Heridas
9.
Immunity ; 49(6): 1021-1033.e6, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566880

RESUMEN

Metabolic engagement is intrinsic to immune cell function. Prostaglandin E2 (PGE2) has been shown to modulate macrophage activation, yet how PGE2 might affect metabolism is unclear. Here, we show that PGE2 caused mitochondrial membrane potential (Δψm) to dissipate in interleukin-4-activated (M(IL-4)) macrophages. Effects on Δψm were a consequence of PGE2-initiated transcriptional regulation of genes, particularly Got1, in the malate-aspartate shuttle (MAS). Reduced Δψm caused alterations in the expression of 126 voltage-regulated genes (VRGs), including those encoding resistin-like molecule α (RELMα), a key marker of M(IL-4) cells, and genes that regulate the cell cycle. The transcription factor ETS variant 1 (ETV1) played a role in the regulation of 38% of the VRGs. These results reveal ETV1 as a Δψm-sensitive transcription factor and Δψm as a mediator of mitochondrial-directed nuclear gene expression.


Asunto(s)
Núcleo Celular/efectos de los fármacos , Dinoprostona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Animales , Núcleo Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Interleucina-4/farmacología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Semin Immunol ; 28(5): 408-416, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-28340958

RESUMEN

Innate immunity is the first line of defense against invading pathogens. Changes in both metabolism and chromatin accessibility contribute to the shaping of these innate immune responses, and we are beginning to appreciate that cross-talk between these two systems plays an important role in determining innate immune cell differentiation and function. In this review we focus on acetylation, a post-translational modification important for both regulating chromatin accessibility by modulating histone function, and for functional regulation of non-histone proteins, which has many links to both immune signaling and metabolism. We discuss the interactions between metabolism and acetylation, including the requirement for metabolic intermediates as substrates and co-factors for acetylation, and the regulation of metabolic proteins and enzymes by acetylation. Here we highlight recent findings, which demonstrate the role that the metabolism-acetylation axis has in coordinating the responses of innate immune cells to the availability of nutrients and the microenvironment.


Asunto(s)
Metabolismo Energético , Sistema Inmunológico/citología , Sistema Inmunológico/fisiología , Inmunidad Innata , Acetilación , Animales , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Inmunomodulación , Transducción de Señal
11.
Mar Drugs ; 10(4): 900-917, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22690150

RESUMEN

Mycothiazole, a polyketide metabolite isolated from the marine sponge Cacospongia mycofijiensis, is a potent inhibitor of metabolic activity and mitochondrial electron transport chain complex I in sensitive cells, but other cells are relatively insensitive to the drug. Sensitive cell lines (IC(50) 0.36-13.8 nM) include HeLa, P815, RAW 264.7, MDCK, HeLa S3, 143B, 4T1, B16, and CD4/CD8 T cells. Insensitive cell lines (IC(50) 12.2-26.5 µM) include HL-60, LN18, and Jurkat. Thus, there is a 34,000-fold difference in sensitivity between HeLa and HL-60 cells. Some sensitive cell lines show a biphasic response, suggesting more than one mechanism of action. Mitochondrial genome-knockout ρ(0) cell lines are insensitive to mycothiazole, supporting a conditional mitochondrial site of action. Mycothiazole is cytostatic rather than cytotoxic in sensitive cells, has a long lag period of about 12 h, and unlike the complex I inhibitor, rotenone, does not cause G(2)/M cell cycle arrest. Mycothiazole decreases, rather than increases the levels of reactive oxygen species after 24 h. It is concluded that the cytostatic inhibitory effects of mycothiazole on mitochondrial electron transport function in sensitive cell lines may depend on a pre-activation step that is absent in insensitive cell lines with intact mitochondria, and that a second lower-affinity cytotoxic target may also be involved in the metabolic and growth inhibition of cells.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Genoma Mitocondrial , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Tiazoles/farmacología , Animales , Organismos Acuáticos/química , Organismos Acuáticos/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Perros , Células HL-60 , Células HeLa , Humanos , Células Jurkat , Ratones , Mitocondrias/genética , Poríferos/química , Poríferos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA