Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 9(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291612

RESUMEN

High temperatures, wind, and excessive sunlight can negatively impact yield and fruit quality in semi-arid apple production regions. Netting was originally designed for hail protection, but it can modify the light spectrum and affect fruit quality. Here, pearl, blue, and red photoselective netting (≈20% shading factor) was installed in 2015 over a commercial "Cameron Select® Honeycrisp" orchard. Our research objectives were to (1) describe the light quantity and quality under the colored nets compared to an uncovered control and (2) investigate the effect of Photoselective nets on "Honeycrisp" apple quality for two growing seasons. Light transmittance and scattering for each treatment were measured with a spectroradiometer, and samples for fruit quality analyses were collected at harvest. PAR (photosynthetic active radiation), UV, blue, red, and far-red light were lower underneath all netting treatments compared to an uncovered control. The scattered light was higher under the pearl net compared to other colors, while red and far-red light were lower under the blue net. For two consecutive years, trees grown under the photoselective nets intercepted more incoming light than the uncovered trees with no differences among the three colors. In both years, trees under red and blue nets had more sunburn-free (clean) apples than pearl and control. Red color development for fruit was lower when nets were used. Interestingly, bitter pit incidence was lower underneath red nets for both years. Other than red color development, "Honeycrisp" fruit quality was not appreciably affected by the use of netting. These results highlight the beneficial effect of nets in improving light quality in orchards and mitigating physiological disorders such as bitter pit in "Honeycrisp" apple.

2.
Plant Methods ; 14: 94, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30386412

RESUMEN

BACKGROUND: The reduced growth of plants during the winter causes a lack in the perceptibility of the phenological events making challenging the study of dormancy. For deciduous crops, dormancy is generally determined by evaluating budbreak of single-node cuttings that are exposed to conditions suitable for growth. However, the absence of a statistical basis for analyzing and interpreting the budbreak behavior evaluated as the percent budbreak, the average time to budbreak and the time to reach 50% budbreak, has caused inconsistent and contradictory criteria to identify the dormancy status of different deciduous crops. RESULTS: In this study, a method was developed to analyze the duration between sampling and budbreak of single-node cuttings and to estimate the dormancy status for grapevines (Vitis vinifera L.) based on the time-to-event distribution of the observations. This method estimates the probability curve of budbreak for each sample and classifies each curve into paradormancy, endodormancy, and ecodormancy according to the significance when compared to a sample curve estimated from cuttings collected during paradormancy and referred to as "reference." CONCLUSION: The approach described in this study provided a comparison of the budbreak distribution of cuttings collected during distinct phases with a confidence of 95%. It also allowed the estimation of the date of occurrence of the dormancy stages for two grapevine cultivars 'Cabernet Sauvignon' and 'Chardonnay,' based on the variability within the sampling season rather than on fixed arbitrary criteria. This approach can also be used to analyze budbreak data of single-node cuttings from other common deciduous crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA