RESUMEN
Microgreens, also called superfoods, emerge because of their high levels of nutrients, diverse flavour profiles, and sustainable cultivation methods, which make them culinary delights and valuable to a healthy and flavorful diet. The present study investigated Brassicaceae family microgreens, proposing a novel system (quality indices) that allows scoring among them. Fourteen Brassica microgreen species were morphological, phytochemical, and sensorial investigated. The morphological assessment revealed that radish microgreens exhibited the highest leaf area (p < 0.05), while red mizuna demonstrated superior yield. Cauliflower microgreens contained the highest concentrations of ascorbic acid (HPLC-DAD) and total phenolic content (p < 0.05). Phytochemical analysis using HPLC-MS/MS identified over 18 glucosinolates and phenolic compounds. Red mustard and red cabbage showed the highest glucosinolate content (p < 0.05). Watercress exhibited the highest phenolic compound content (p < 0.05), primarily flavonoids, while broccoli and radish contained the highest isothiocyanate levels. Cauliflower microgreens resulted in the most consumer-accepted variety. Appling quality indices scoring system identified radish, cauliflower, and broccoli microgreens as the most promising species. This study underscores the potential of Brassica microgreens as an excellent source of health-promoting phytochemicals with favorable market acceptance, providing valuable insights for both nutritional research and commercial applications.
Asunto(s)
Brassicaceae , Glucosinolatos , Fenoles , Fitoquímicos , Gusto , Fitoquímicos/análisis , Glucosinolatos/análisis , Fenoles/análisis , Brassicaceae/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Humanos , Ácido Ascórbico/análisis , Flavonoides/análisis , Brassica/química , Hojas de la Planta/química , Isotiocianatos/análisis , Raphanus/químicaRESUMEN
Microgreens are novel foods with high concentrations of bioactive compounds and can be grown easily and sustainably. Among all the microgreens genera produced, Brassicaceae stand out because of the wide evidence about their beneficial effects on human health attributed to phenolic compounds, vitamins, and particularly glucosinolates and their breakdown products, isothiocyanates and indoles. The phytochemical profile of each species is affected by the growing conditions in a different manner. The agronomic practices that involve these factors can be used as tools to modulate and enhance the concentration of certain compounds of interest. In this sense, the present review summarizes the impact of substrates, artificial lighting, and fertilization on bioactive compound profiles among species. Since Brassicaceae microgreens, rich in bioactive compounds, can be considered functional foods, we also included a discussion about the health benefits associated with microgreens' consumption reported in the literature, as well as their bioaccessibility and human absorption. Therefore, the present review aimed to analyze and systematize cultivation conditions of microgreens, in terms of their effects on phytochemical profiles, to provide possible strategies to enhance the functionality and health benefits of Brassicaceae microgreens.
RESUMEN
Sediment organic matter (SOM) plays an important role in capturing polybrominated diphenyl ethers (PBDEs) due to its affinity to hydrophobic and lipophilic compounds. Previous publications about correlations between PBDE concentrations and SOM content showed discrepancies among the results, reporting either significant positive correlations or no correlations at all. This work aimed to provide a deeper insight into SOM characteristics that might determine the concentrations of PBDEs in sediments. Sediment samples from Mendoza province, Argentina, were analyzed to contrast two models, environmental and experimental, using multivariate learning methods. Mendoza has been going through increasing events of drought and water scarcity, hence the occurrence, transport, and fate of contaminants as PBDEs in aquatic environments is of superlative importance. Principal component analysis (PCA) and partial least squares regression (PLS) were used to evaluate the correlations between physicochemical properties of sediments, semi-quantitative Fourier transform infrared (FTIR) area ratios obtained from SOM spectra, and PBDE concentrations in sediments. Moreover, a linear model was proposed to determine SOM density using FTIR area ratios and it was used as an additional variable in multivariate analyses. The results obtained from PCA and PLS were consistent and revealed that PBDE concentrations in sediments were correlated with a more degraded SOM, characterized by shorter and more branched hydrocarbon chains. PBDE concentrations were also correlated with higher SOM density values, which in turn were correlated with SOM degradation. These findings extend previous understanding and emphasize that not only is the organic matter content a factor in determining PBDE concentrations in sediments, but also and more significantly, its degree of degradation.
RESUMEN
CYP2A6 is a human enzyme responsible for the metabolic elimination of nicotine, and it is also involved in the activation of procarcinogenic nitrosamines, especially those present in tobacco smoke. Several investigations have reported that reducing this enzyme activity may contribute to anti-smoking therapy as well as reducing the risk of promutagens in the body. For these reasons, several authors investigate selective inhibitors molecules toward this enzyme. The aim of this study was to evaluate the interactions between a set of organosulfur compounds and the CYP2A6 enzyme by a quantitative structure-activity relationship (QSAR) analysis. The present work provides a better understanding of the mechanisms involved, with the final goal of providing information for the future design of CYP2A6 inhibitors based on dietary compounds. The reported activity data were modeled by means of multiple regression analysis (MLR) and partial least-squares (PLS) techniques. The results indicate that hydrophobic and steric factors govern the union, while electronic factors are strongly involved in the case of monosulfides.
RESUMEN
Atherosclerosis provokes a continuous worsening of affected vessels causing a blood flow diminution with several complications and with clinical manifestations that generally appear in advanced phases of the illness. Hence, the conventional therapies are not enough because the atherosclerotic injuries are often irrevocable. For this reason, emerges the necessity to implement smart ways of drug supply and develop new therapeutic targets that decrease the advance atherosclerotic lesion. It results due to particular interest to use new tools for prevention, diagnosis, and treatment of this cardiovascular disease, thus concentrating our attention to accomplish better management on the immune system. Finally, this mini-review highlights the most recent knowledge about nanotechnology as a robust, novel and promissory therapeutic option applied to atherosclerotic pathology, nevertheless, we also alert for possible issues associated with their use.
Asunto(s)
Aterosclerosis/diagnóstico , Aterosclerosis/tratamiento farmacológico , Nanomedicina , Animales , Humanos , Sistema Inmunológico/efectos de los fármacosRESUMEN
An analytical methodology based on coprecipitation-assisted coacervative extraction coupled to HPLC-UV was developed for determination of five organophosphorus pesticides (OPPs), including fenitrothion, guthion, parathion, methidathion, and chlorpyrifos, in water samples. It involves a green technique leading to an efficient and simple analytical methodology suitable for high-throughput analysis. Relevant physicochemical variables were studied and optimized on the analytical response of each OPP. Under optimized conditions, the resulting methodology was as follows: an aliquot of 9 mL of water sample was placed into a centrifuge tube and 0.5 mL sodium citrate 0.1 M, pH 4; 0.08 mL Al2 (SO4 )3 0.1 M; and 0.7 mL SDS 0.1 M were added and homogenized. After centrifugation the supernatant was discarded. A 700 µL aliquot of the coacervate-rich phase obtained was dissolved with 300 µL of methanol and 20 µL of the resulting solution was analyzed by HPLC-UV. The resulting LODs ranged within 0.7-2.5 ng/mL and the achieved RSD and recovery values were <8% (n = 3) and >81%, respectively. The proposed analytical methodology was successfully applied for the analysis of five OPPs in water samples for human consumption of different locations of Mendoza.
Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Compuestos Organofosforados/análisis , Residuos de Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Tecnología Química Verde , Límite de Detección , Modelos Lineales , Compuestos Organofosforados/química , Compuestos Organofosforados/aislamiento & purificación , Residuos de Plaguicidas/química , Residuos de Plaguicidas/aislamiento & purificación , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificaciónRESUMEN
Ultrasound-assisted extraction (UAE), cloud point extraction (CPE), and ultrasound back-extraction (UABE) techniques have been coupled for lixiviation, preconcentration, and cleanup of polybrominated diphenyl ethers (PBDEs) from milk samples for determination by gas chromatography-electron capture detection (GC-ECD). Physicochemical parameters that affect the efficiency of the extraction system were investigated using a design of experiments based on multivariate statistical tools, and considering the sample matrix along the development. The coupling of the leaching step, UAE, enhanced ca. 3.5 times the extraction efficiency of the former sample preparation methodology (CPE-UABE) leading to cleaner sample extracts suitable for GC analysis. Under optimum conditions, the proposed methodology exhibits successful performance in terms of linearity and precision, with recoveries in the range of 68-70% and LODs within the range 0.05-0.5 ng/g dry weight (d.w.). The proposed sample preparation methodology coupled three green analytical techniques. It expands the application frontiers of CPE for the analysis of biological samples by GC. The optimized methodology was used for determination of PBDEs in powder milk samples, from both commercial and human sources.
Asunto(s)
Tecnología Química Verde/métodos , Éteres Difenilos Halogenados/análisis , Leche/química , Sonicación/métodos , Animales , Fraccionamiento Químico , Cromatografía de Gases/métodos , Éteres Difenilos Halogenados/química , Éteres Difenilos Halogenados/aislamiento & purificación , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados , Proyectos de InvestigaciónRESUMEN
Atherosclerosis, one of the main pathologic entities considered epidemic and a worldwide public health problem, is currently under constant review as regards its basic determining mechanisms and therapeutic possibilities. In this regard, all patients afflicted with the disease exhibit mitochondrial dysfunction, oxidative stress and inflammation. Interestingly, nitric oxide - a known vasoactive messenger gas - has been closely related to the inflammatory, oxidative and mitochondrial dysfunctional process that characterizes atherosclerosis. In addition, it has recently been demonstrated that alterations in the bioavailability of nitric oxide would induce the expression of heat shock proteins. This agrees with the use of functional foods as a strategy to prevent both vascular aging and the development of atherosclerosis. Finally, a greater knowledge regarding the mechanisms implied in the development of atherosclerosis will enable proposing new and possible hygiene, health and therapeutic interventions.
Asunto(s)
Aterosclerosis/prevención & control , Alimentos Funcionales , Proteínas HSP70 de Choque Térmico/metabolismo , Óxido Nítrico/metabolismo , Envejecimiento/fisiología , Aterosclerosis/fisiopatología , Humanos , Inflamación/complicaciones , Mitocondrias/patología , Estrés OxidativoRESUMEN
UNLABELLED: Wine is a dietary source of polyphenolic compounds with reported health benefits when moderately consumed. Several of these compounds can associate with metals forming complexes. Therefore, this work was conducted to reach a better understanding of the nature and chemical stability of wine-derived Fe(3+)-quercetin complexes in a digestion model. The stability of the complexes in a synthetic (simulated) wine was studied before and after in vitro gastric and intestinal digestions by high-performance liquid chromatography (HPLC) with UV-Vis detection. Metal determination was performed by atomic absorption spectrometry (ETAAS) to evaluate possible dissociation of complexes. During HPLC analysis all peaks eluted from the chromatographic column were collected, acidified, and analyzed by ETAAS. The results showed that complexes remain substantially stable after gastric digestion conditions, with recoveries of 84% to 90%. Although metal complexes were partially degraded during intestinal digestion, 41% to 45% of the Fe(3+)-quercetin complexes was recovered. PRACTICAL APPLICATION: This work reveals the chemical stability of Fe3+quercetin complexes in synthetic wines after an in vitro gastrointestinal digestion. The knowledge of this process would be useful to understand the bioavailability of these compounds.
Asunto(s)
Hierro/química , Quercetina/química , Vino/análisis , Disponibilidad Biológica , Cromatografía Líquida de Alta Presión/métodos , Digestión/fisiología , Humanos , Modelos Biológicos , Espectrofotometría AtómicaRESUMEN
This work proposes the novel application of a microextraction technique, solid phase microextraction (SPME), coupled to liquid chromatography with UV detection (HPLC-UV) for the analysis of organosulfur compounds (OSCs) in garlic samples. Additionally, a comparative study of OSCs profiles obtained by SPME coupled to HPLC-UV and gas chromatography with flame photometric detector (GC-FPD), respectively; was carried out. This study provided complementary evidence about OSCs's lability and "artifacts" formation during the analytical process. Raw, cooked and distilled garlic samples were considered. The target analytes were diallyl disulphide (DADS), diallyl sulphide (DAS), diallyl trisulphide (DATS), allicin, 3-vinyl-4H-1,3-dithiin (3-VD), 2-vinyl-4H-1,2-dithiin (2-VD) and (E)- and (Z)-ajoene, which are the most important OSCs with biological activities present in raw and processed garlic. The coupling of SPME and HPLC showed to be reliable, fast, sensible and selective methodology for OSCs analysis.
Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Microextracción en Fase Sólida/métodos , Cromatografía Liquida , Ajo/químicaRESUMEN
Coacervative microextraction ultrasound-assisted back-extraction technique (CME-UABE) is proposed for the first time for extracting and preconcentrating organophosphates pesticides (OPPs) from honey samples prior to gas chromatography-mass spectrometry (GC-MS) analysis. The extraction/preconcentration technique is supported on the micellar organized medium based on non-ionic surfactant. To enable coupling the proposed technique with GC, it was required to back extract the analytes into hexane. Several variables including, surfactant type and concentration, equilibration temperature and time, matrix modifiers, pH and buffers nature were studied and optimized over the relative response of the analytes. The best working conditions were as follows: an aliquot of 10 mL 50 gL(-1) honey blend solution was conditioned by adding 100 µL 0.1 molL(-1) hydrochloric acid (pH 2) and finally extracted with 100 µL Triton X-114 100 gL(-1) at 85°C for 5 min using CME technique. Under optimal experimental conditions, the enrichment factor (EF) was 167 and limits of detection (LODs), calculated as three times the signal-to-noise ratio (S/N=3), ranged between 0.03 and 0.47 ngg(-1). The method precision was evaluated over five replicates at 1 ngg(-1) with RSDs ≤ 9.5%. The calibration graphs were linear within the concentration range of 0.3-1000 ngg(-1) for chlorpirifos; and 1-1000 ngg(-1) for fenitrothion, parathion and methidathion, respectively. The coefficients of correlation were ≥ 0.9992. Validation of the methodology was performed by standard addition method at two concentration levels (2 and 20 ngg(-1)). The recoveries were ≥ 90%, indicating satisfactory robustness of the methodology, which could be successfully applied for determination of OPPs in honey samples of different Argentinean regions. Two of the analyzed samples showed levels of methidathion ranged between 1.2 and 2.3 ngg(-1).
Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Miel/análisis , Compuestos Organofosforados/análisis , Residuos de Plaguicidas/análisis , Microextracción en Fase Sólida/métodos , Ácido Clorhídrico , Concentración de Iones de Hidrógeno , Modelos Lineales , Octoxinol , Concentración Osmolar , Polietilenglicoles , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Temperatura , UltrasonidoRESUMEN
In this study, multiple linear regression (MLR) and partial least-squares (PLS) techniques were used for modeling the soybean 15-lipoxygenase inhibitory activity of a varied group of mono-, di-, and trisulfides derived from the essential oil of garlic. The structures of the compounds under study were characterized by means of calculated physicochemical parameters and several nonempirical descriptors, such as topological, geometrical, and quantum chemical indices. The results obtained indicate that the inhibitory activity is strongly dependent on the ability of the compounds to participate in dispersive interactions with the enzyme, as expressed by the solvent-accessible surface area (SASA) and the average distance/distance degree descriptor (ADDD) index. On the other hand, the high contribution of the lowest unoccupied molecular orbit term (LUMO) in the PLS models derived for the di- and trisulfides suggests that the solute's electron-acceptor capacity plays a fundamental role in the inhibitory activity exhibited for these compounds. Finally, the geometric features as expressed by the shape parameters included in the models indicate a low but not negligible positive contribution of molecular linearity in the enzyme-inhibitor binding. In summary, the developed quantitative structure-activity relationship approach successfully accounts for the potencies of organosulfur compounds acting on soybean 15-lipoxygenase and thereby offers both a guide for the synthesis of new compounds and a hypothesis for the molecular basis of their activity.