Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 25(45): 455706, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25338823

RESUMEN

We present an experimental study on the influence of annealing temperature on morphological changes of colloidal silver nanoparticles (Ag NPs) and their optical response. Monodisperse colloidal Ag NPs with diameter of 164 nm ± 15 nm have been fabricated by a facile two-step synthesis approach. The annealing effects on the Ag NPs have been investigated by means of optical measurements, scanning electron microscopy, x-ray photoelectron spectroscopy and x-ray diffraction. By annealing up to 440 °C morphology and chemical compositions of the Ag NPs changed. These changes affect the particle size and distribution, surface morphology, crystallinity and, most importantly, the oxidation state of the surface layer. The removal of an oxide layer leads to stronger light scattering from the nanoparticles and decreases parasitic light absorption at wavelengths above 400 nm. Strong light trapping has been observed for a silicon thin film with embedded annealed Ag NPs. This study demonstrates that colloidal Ag NPs for plasmonic solar cells need to be carefully processed and that they can potentially achieve high scatter efficiencies.

2.
Phys Chem Chem Phys ; 16(24): 12043-50, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24710175

RESUMEN

A photovoltaic tandem cell made of amorphous silicon (a-Si) and microcrystalline silicon (µc-Si) was investigated as a photocathode for hydrogen evolution in a photoelectrochemical device. The electronic and electrochemical properties of the samples were characterized using X-ray photoemission spectroscopy (XPS) and cyclic voltammetry (CV), whereas the morphology of the surface in contact with the electrolyte was investigated by scanning electron microscopy (SEM). The electric efficiency of the tandem cell was determined to be 5.2% in a photoelectrochemical (PEC) setup in acidic solution which is only about half of the photovoltaic efficiency of the tandem cell. A significant improvement in efficiency was achieved with platinum as a catalyst which was deposited by physical vapour deposition (PVD) under ultra-high vacuum (UHV) conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA