Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(10): 16669-16676, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221504

RESUMEN

Cavity resonator grating filters (CRIGFs) integrated on lithium niobate on insulator (LNOI) with electrical tuning elements are reported. The resonance wavelength of the filters is in the 780 nm range. Integrated thermo-optical tuning range of 2.5 nm is measured using integrated resistors, whilst a 0.7 nm electro-optical tuning range using capacitive metallic pads is achieved with ±400V drive voltage.

2.
Opt Express ; 25(16): 19275-19280, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-29041120

RESUMEN

In this paper, we demonstrate that buried oxide-confined waveguides can be formed using a lateral oxidation process carried out through a discrete set of small-diameter via-holes instead of the conventional scheme where the oxidation starts from the edges of etched mesas. The via-hole oxidation is shown to lead to straight waveguides with smooth oxide/semiconductor interfaces and whose propagation losses are similar to one obtained using the standard process but with the advantage of maintaining a quasi-planar wafer surface. It thereby paves the way towards a simplification of the fabrication of III-V-semiconductor-oxide photonic devices.

3.
Biomed Opt Express ; 7(6): 2163-73, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27375935

RESUMEN

We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA