RESUMEN
BACKGROUND: Traditional methods for rejection control in transplanted patients are considered invasive, risky, and prone to sampling errors. Using molecular biomarkers as an alternative protocol to biopsies, for monitoring rejection may help to mitigate some of these problems, increasing the survival rates and well-being of patients. Recent advances in omics technologies provide an opportunity for screening new molecular biomarkers to identify those with clinical utility. OBJECTIVE: This systematic literature review (SLR) aimed to summarize existing evidence derived from large-scale expression profiling regarding differentially expressed mRNA and miRNA in graft rejection, highlighting potential molecular biomarkers in transplantation. METHODS: The study was conducted following PRISMA methodology and the BiSLR guide for performing SLR in bioinformatics. PubMed, ScienceDirect, and EMBASE were searched for publications from January 2001 to January 2018, and studies (i) aiming at the identification of transplant rejection biomarkers, (ii) including human subjects, and (iii) applying methodologies for differential expression analysis from large-scale expression profiling were considered eligible. Differential expression patterns reported for genes and miRNAs in rejection were summarized from both cross-organ and organ-specific perspectives, and pathways enrichment analysis was performed for candidate biomarkers to interrogate their functional role in transplant rejection. RESULTS: A total of 821 references were collected, resulting in 604 studies after removal of duplicates. After application of inclusion and exclusion criteria, 33 studies were included in our analysis. Among the 1517 genes and 174 miRNAs identifed, CXCL9, CXCL10, STAT1, hsa-miR-142-3p, and hsa-miR-155 appeared to be particularly promising as biomarkers in transplantation, with an increased expression associated with transplant rejection in multiple organs. In addition, hsa-miR-28-5p was consistently decreased in samples taken from rejected organs. CONCLUSION: Despite the need for further research to fill existing knowledge gaps, transcriptomic technologies have a relevant role in the discovery of accurate biomarkers for transplant rejection diagnostics. Studies have reported consistent evidence of differential expression associated with transplant rejection, although issues such as experimental heterogeneity hinder a more systematic characterization of observed molecular changes. Special attention has been giving to large-scale mRNA expression profiling in rejection, whereas there is still room for improvements in the characterization of miRnome in this condition. PROSPERO REGISTRATION NUMBER: CRD42018083321.
Asunto(s)
Biomarcadores , Rechazo de Injerto/genética , Transcriptoma , Animales , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , Especificidad de Órganos/genética , Trasplante de Órganos , Sesgo de Publicación , ARN Mensajero/genéticaRESUMEN
Artificial miRNAs (amiRNAs) are molecules that have been developed to promote gene silencing in a similar manner to naturally occurring miRNAs. amiRNAs are generally constructed by replacing the mature miRNA sequence in the pre-miRNA stem-loop with a sequence targeting a gene of interest. These molecules offer an interesting alternative to silencing approaches that are based on shRNAs and siRNAs because they present the same efficiency as these options and are less cytotoxic. amiRNAs have mostly been applied to gene knockdown in plants; they have been examined to a lesser extent in animal cells. Therefore, this article reviews the amiRNAs that have been developed for animal cells and focuses on the miRNA scaffolds that can already be applied to construct the artificial counterparts, as well as on the different approaches that have been described to promote amiRNA expression and silencing efficiency. Furthermore, the availability of amiRNA libraries and other tools that can be used to design and construct these molecules is briefly discussed, along with an overview of the therapeutic applications for which amiRNAs have already been evaluated.
Asunto(s)
Técnicas de Silenciamiento del Gen , MicroARNs/química , Animales , Diseño de Fármacos , MicroARNs/uso terapéutico , Terapia Molecular Dirigida , Plantas/genética , ARN Interferente Pequeño/genéticaRESUMEN
Mesenchymal stromal cells (MSCs) are multipotent, plastic, adherent cells able to differentiate into osteoblasts, chondroblasts and adipocytes. MSCs can be isolated from many different body compartments of adult and fetal individuals. The most commonly studied MSCs are isolated from humans, mice and rats. However, studies are also being conducted with the use of MSCs that originate from different model organisms, such as cats, dogs, guinea pigs, ducks, chickens, buffalo, cattle, sheep, goats, horses, rabbits and pigs. MSCs derived from unconventional model organisms all present classic fibroblast-like morphology, the expression of MSC-associated cell surface markers such as CD44, CD73, CD90 and CD105 and the absence of CD34 and CD45. Moreover, these MSCs have the ability to differentiate into osteoblasts, chondroblasts and adipocytes. The MSCs isolated from unconventional model organisms are being studied for their potential to heal different tissue defects and injuries and for the development of scaffold compositions that improve the proliferation and differentiation of MSCs for tissue engineering.
Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/citología , Adipocitos/citología , Animales , Células de la Médula Ósea/citología , Condrocitos/citología , Humanos , Osteoblastos/citologíaRESUMEN
Pleurotus species secrete phenol oxidase enzymes: laccase (Lcc) and manganese peroxidase (MnP). New genotypes of these species show potential to be used in processes aiming at the degradation of phenolic compounds, polycyclic aromatic hydrocarbons and dyes. Hence, a screening of some strains of Pleurotus towards Lcc and MnP production was performed in this work. Ten strains were grown through solid-state fermentation on a medium based on Pinus spp. sawdust, wheat bran and calcium carbonate. High Lcc and MnP activities were found with these strains. Highest Lcc activity, 741 ± 245 U gdm(-1) of solid state-cultivation medium, was detected on strain IB11 after 32 days, while the highest MnP activity occurred with strains IB05, IB09, and IB11 (5,333 ± 357; 4,701 ± 652; 5,999 ± 1,078 U gdm(-1), respectively). The results obtained here highlight the importance of further experiments with lignocellulolytic enzymes present in different strains of Pleurotus species. Such results also indicate the possibility of selecting more valuable strains for future biotechnological applications, in soil bioremediation and biological biomass pre-treatment in biofuels production, for instance, as well as obtaining value-added products from mushrooms, like phenol oxidase enzymes.
RESUMEN
Stem cells (SC) are able to self-renew and to differentiate into many types of committed cells, making SCs interesting for cellular therapy. However, the pool of SCs in vivo and in vitro consists of a mix of cells at several stages of differentiation, making it difficult to obtain a homogeneous population of SCs for research. Therefore, it is important to isolate and characterize unambiguous molecular markers that can be applied to SCs. Here, we review classical and new candidate molecular markers that have been established to show a molecular profile for human embryonic stem cells (hESCs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). The commonly cited markers for embryonic ESCs are Nanog, Oct-4, Sox-2, Rex-1, Dnmt3b, Lin-28, Tdgf1, FoxD3, Tert, Utf-1, Gal, Cx43, Gdf3, Gtcm1, Terf1, Terf2, Lefty A, and Lefty B. MSCs are primarily identified by the expression of CD13, CD29, CD44, CD49e, CD54, CD71, CD73, CD90, CD105, CD106, CD166, and HLA-ABC and lack CD14, CD31, CD34, CD45, CD62E, CD62L, CD62P, and HLA-DR expression. HSCs are mainly isolated based on the expression of CD34, but the combination of this marker with CD133 and CD90, together with a lack of CD38 and other lineage markers, provides the most homogeneous pool of SCs. Here, we present new and alternative markers for SCs, along with microRNA profiles, for these cells.
Asunto(s)
Células Madre/metabolismo , Animales , Antígenos de Diferenciación/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteínas Ligadas a GPI/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , ADN Metiltransferasa 3BRESUMEN
Pleurotus species secrete phenol oxidase enzymes: laccase (Lcc) and manganese peroxidase (MnP). New genotypes of these species show potential to be used in processes aiming at the degradation of phenolic compounds, polycyclic aromatic hydrocarbons and dyes. Hence, a screening of some strains of Pleurotus towards Lcc and MnP production was performed in this work. Ten strains were grown through solid-state fermentation on a medium based on Pinus spp. sawdust, wheat bran and calcium carbonate. High Lcc and MnP activities were found with these strains. Highest Lcc activity, 741 ± 245 U gdm-1 of solid state-cultivation medium, was detected on strain IB11 after 32 days, while the highest MnP activity occurred with strains IB05, IB09, and IB11 (5,333 ± 357; 4,701 ± 652; 5,999 ± 1,078 U gdm-1, respectively). The results obtained here highlight the importance of further experiments with lignocellulolytic enzymes present in different strains of Pleurotus species. Such results also indicate the possibility of selecting more valuable strains for future biotechnological applications, in soil bioremediation and biological biomass pre-treatment in biofuels production, for instance, as well as obtaining value-added products from mushrooms, like phenol oxidase enzymes.
Asunto(s)
Compuestos Fenólicos/análisis , Técnicas In Vitro , Lacasa/análisis , Lacasa/aislamiento & purificación , Manganeso/análisis , Manganeso/aislamiento & purificación , Oxidorreductasas/análisis , Peroxidasa/análisis , Peroxidasa/aislamiento & purificación , Pinus/genética , Pleurotus/aislamiento & purificación , Biodegradación Ambiental , Activación Enzimática , Genotipo , MétodosRESUMEN
Some conditions in media composition for laccases production, such as different sources of carbon and organic nitrogen, antifoams and a surfactant, were studied in liquid cultures of Pleurotus sajor-caju strain PS-2001. Cultivation with fructose or glucose as carbon sources produced maximum enzyme activities of 37 and 36 U mL(-1), respectively. When sucrose was present in the medium, the best results were obtained using 5 g L(-1) of this carbohydrate, on the 11th day of the process, attaining laccase titres of 13 U mL(-1). In a medium without casein, practically no enzyme was produced during the experiments; among the sources of nitrogen studied, pure casein led to the highest titres of laccase activity. Different concentrations of pure casein and sucrose were also tested. As to the different concentrations of casein, the addition of 1.5 g L(-1) resulted in the highest titres of laccase activity. Negligible levels of manganese peroxidase activity were also detected in the culture medium. In low concentrations, polypropylene glycol or silicon-based antifoams and the surfactant Tween 80 have no significant influence on the formation of laccases by P. sajor-caju. However, enhanced concentration of polypropylene glycol negatively affected the production of laccases but favored the titres in total peroxidases, lignin peroxidase and veratryl alcohol oxidase.