Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 53(13): 6534-43, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24943232

RESUMEN

The delicate balance between cooperative and local contributions in the ferroelectric distortions of BaTiO3 is explored by means of ab initio calculations. As a salient feature, it is found that a single Ti(4+) ion in BaTiO3 is not allowed to move off-center at ambient pressure, while this is no longer true if the lattice is expanded by only ∼5%, stressing the high sensitivity of the local contribution to chemical and hydrostatic pressures. In order to further understand the effect of local contributions on the phase transition mechanism of ferroelectrics, we have investigated the surprising C3v → C4v → Oh local transformations occurring in the 10-50 K temperature range for the MnCl6(5-) complex formed in KCl:Mn(+) that mimic the behavior of BaTiO3. From Boltzmann analysis of the vibronic levels derived from ab initio calculations and considering decoherence introduced by random strains, the present calculations reproduce the experimental phase sequence and transition temperatures. Furthermore, our calculations show that the off-center instability in KCl:Mn(+) would be suppressed by reducing by only 1% the lattice parameter, a situation that then becomes comparable to that found for BaTiO3 at ambient pressure. The present results thus stress the deep link between the structural phase transitions of ferroelectric materials and local phase transitions displayed by transition-metal impurities in insulators.

2.
Phys Chem Chem Phys ; 15(35): 14715-22, 2013 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-23900202

RESUMEN

The electrical conduction properties of ruthenium oxide nanocables are of high interest. These cables can be built as thin shells of RuO2 surrounding an inner solid nanowire of a dielectric insulating silica material. With this motivation we have investigated the structural, electronic and transport properties of RuO2 nanotubes using the density functional formalism, and applying many-body corrections to the electronic band structure. The structures obtained for the thinnest nanotubes are of the rutile type. The structures of nanotubes with larger diameters deviate from the rutile structure and have in common the formation of dimerized Ru-Ru rows along the axial direction. The cohesive energy shows an oscillating behavior as a function of the tube diameter. With the exception of the thinnest nanotubes, there is a correlation such that the electronic band structures of tubes with high cohesive energies show small gaps at the Fermi energy, whereas the less stable nanotubes exhibit metallic behavior, with bands crossing the Fermi surface. The electronic conductance of nanotubes of finite length connected to gold electrodes has been calculated using a Green-function formalism, and correlations have been established between the electronic band structure and the conductance at zero bias.

3.
Phys Rev Lett ; 108(11): 116103, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22540492

RESUMEN

Despite their importance in physics and chemistry, the origin and extent of the scaling relations between the energetics of adsorbed species on surfaces remain elusive. We demonstrate here that scalability is not exclusive to adsorbed atoms and their hydrogenated species but rather a general phenomenon between any set of adsorbates bound similarly to the surface. On the example of the near-surface alloys of Pt, we show that scalability is a result of identical variations of adsorption energies with respect to the valence configuration of both the surface components and the adsorbates.

4.
J Chem Phys ; 134(24): 244509, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21721645

RESUMEN

Versatile Brønsted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site, and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a "cyclic" behavior in the transition state characteristics upon change of the active transition metal of the oxide.

5.
J Chem Phys ; 131(1): 014101, 2009 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-19586090

RESUMEN

We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M(1)); and 1 alkali, alkaline earth or 3d/4d transition metal atom (M(2)) plus two to five (BH(4))(-) groups, i.e., M(1)M(2)(BH(4))(2-5), using a number of model structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride complexes. Of the over 700 investigated structures, about 20 were predicted to form potentially stable alloys with promising decomposition energies. The M(1)(Al/Mn/Fe)(BH(4))(4), (Li/Na)Zn(BH(4))(3), and (Na/K)(Ni/Co)(BH(4))(3) alloys are found to be the most promising, followed by selected M(1)(Nb/Rh)(BH(4))(4) alloys.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA