RESUMEN
The (R,R)-Teth-TsDPEN-Ru(II) complex promoted the one-pot double C=O reduction of α-alkyl-ß-ketoaldehydes through asymmetric transfer hydrogenation/dynamic kinetic resolution (ATH-DKR) under mild conditions. In this process, ten anti-2-benzyl-1-phenylpropane-1,3-diols (85:15 to 92:8 dr) were obtained in good yields (41-87%) and excellent enantioselectivities (>99% ee for all compounds). Notably, the preferential reduction of the aldehyde moiety led to the in situ formation of 2-benzyl-3-hydroxy-1-phenylpropan-1-one intermediates. These intermediates played a crucial role in enhancing both reactivity and stereoselectivity through hydrogen bonding.
RESUMEN
Rearranged homoisoflavonoids constitute a unique group of natural products, renowned for their structural diversity and complexity. These compounds, derived from modifications in the 3-benzylchroman skeleton, are categorized into four subclasses: brazilin, caesalpin, protosappanin, and scillascillin homoisoflavonoids. This review examines the advancements in the total synthesis of these complex structures, aiming to highlight the challenges and opportunities encountered. A comparative analysis of the strategies employed thus far to synthesize these compounds provides a comprehensive understanding of the progress in this field.
RESUMEN
The oxo-tethered-Ru(II) precatalyst promoted the one-pot CâC/CâO reduction of chalcones using sodium formate as the hydrogen source in water through asymmetric transfer hydrogenation. Twenty-seven 1,3-diarylpropan-1-ols were obtained in good to excellent yields (up to 96%) and enantiomeric purities (up to 98:2). Our data suggested that the enones are first reduced to the corresponding dihydrochalcones (1,4-selectivity) and then into 1,3-diarylpropan-1-ols (CâO reduction). The stereoelectronic effects of electron-donating and electron-withdrawing groups at the ortho, meta and para positions of both aromatic rings were evaluated. The 2-OH group at the B ring was well tolerated, allowing a straightforward enantioselective synthesis of two flavans through the Mitsunobu cyclization, the antiviral (S)-BW683C and the natural flavan (S)-tephrowatsin E.
Asunto(s)
Chalcona , Chalconas , Hidrogenación , Estereoisomerismo , Agua , Polifenoles , CatálisisRESUMEN
3-Arylidenechroman-4-ones and 2-arylidene-1-tetralones are hydrogenated to cis-benzylic alcohols in dr's and er's up to 99:1 via a CâC and CâO one-pot reduction in the presence of 2-5 mol % Noyori-Ikariya-type RuII chiral complexes and HCO2Na as a hydrogen source under asymmetric transfer hydrogenation-dynamic kinetic resolution (ATH-DKR) conditions. The oxidation of theses substrates resulted in the enantioselective synthesis of the natural homoisoflavanone dihydrobonducellin and its carba-analogues.
Asunto(s)
Tetralonas , Catálisis , Hidrogenación , Cinética , EstereoisomerismoRESUMEN
Catalytic enantioselective 1,3-dipolar cycloaddition between imino esters and electrophilic alkenes, employing chiral metal complexes derived from copper(I) and silver(I) salts and (S)-DM- or (S)-DTBM-Segphos as ligands produces diastereodivergently exo- or endo-cycloadducts, respectively. The effect of the functional group of the dipolarophile and the fine tuning of the catalyst plays an important role in promoting reverse diastereoselectivities. The origins of experimentally observed enantioselectivity and diastereoselectivity data, as well as the origin of the observed switched endo/exo ratios, are also explained by means of density functional theory calculations.