RESUMEN
The present study reports statistical medial optimization for chitinase production by a novel bacterial strain isolated from soil recently, which the name Chitinolyticbacter meiyuanensis SYBC-H1 is proposed. A sequential statistical methodology comprising of Plackett-Burman and response surface methodology (RSM) was applied to enhance the fermentative production of chitinase, in which inulin was firstly used as an effective carbon source. As a result, maximum chitinase activity of 5.17 U/mL was obtained in the optimized medium, which was 15.5-fold higher than that in the basal medium. The triplicate verification experiments were performed under the optimized nutrients levels which indicated that it well agreed with the predicted value.
Asunto(s)
Carbono/análisis , Fermentación , Inulina/aislamiento & purificación , Quitinasas/análisis , Quitinasas/aislamiento & purificación , Interpretación Estadística de Datos , Activación Enzimática , Metodología como un Tema , Optimización de Procesos , MétodosRESUMEN
The present study reports statistical medial optimization for chitinase production by a novel bacterial strain isolated from soil recently, which the name Chitinolyticbacter meiyuanensis SYBC-H1 is proposed. A sequential statistical methodology comprising of Plackett-Burman and response surface methodology (RSM) was applied to enhance the fermentative production of chitinase, in which inulin was firstly used as an effective carbon source. As a result, maximum chitinase activity of 5.17 U/mL was obtained in the optimized medium, which was 15.5-fold higher than that in the basal medium. The triplicate verification experiments were performed under the optimized nutrients levels which indicated that it well agreed with the predicted value.
RESUMEN
The present study reports statistical medial optimization for chitinase production by a novel bacterial strain isolated from soil recently, which the name Chitinolyticbacter meiyuanensis SYBC-H1 is proposed. A sequential statistical methodology comprising of Plackett-Burman and response surface methodology (RSM) was applied to enhance the fermentative production of chitinase, in which inulin was firstly used as an effective carbon source. As a result, maximum chitinase activity of 5.17 U/mL was obtained in the optimized medium, which was 15.5-fold higher than that in the basal medium. The triplicate verification experiments were performed under the optimized nutrients levels which indicated that it well agreed with the predicted value.