Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38794301

RESUMEN

Artemisinin has an endoperoxide bridge structure, which can be cleaved by ferrous ions to generate various carbonyl radicals in an oxygen-independent manner, highlighting its potential for treating hypoxic tumors. In our study, we fabricated Tween 80 micelles loaded with Fe3O4 nanoparticles and artemisinin for cancer therapy. The synthesized Fe3O4 nanoparticles and drug-loaded micelles have particle sizes of about 5 nm and 80 nm, respectively, both exhibiting excellent dispersibility and stability. After uptake by MCF-7 cells, drug-loaded micelles release Fe2+ and ART into the cytoplasm, effectively inducing the generation of reactive oxygen species (ROS) in hypoxic conditions, thereby enhancing toxicity against cancer cells. In vitro and in vivo studies have demonstrated that ART and Fe3O4 nanoparticles are encapsulated in Tween 80 to form micelles, which effectively prevent premature release during circulation in the body. Although free ART and Fe3O4 nanoparticles can inhibit tumor growth, TW80-Fe3O4-ART micelles demonstrate a more pronounced inhibitory effect, with a tumor suppression rate of up to 85%. A novel strategy based on artemisinin and ferroptosis is thus offered, holding a favorable prospect for hypoxic cancer therapy.

2.
Colloids Surf B Biointerfaces ; 240: 113980, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38781845

RESUMEN

The safe and effective delivery of messenger ribonucleic acid (mRNA) is crucial for its therapeutic effects in vivo. In this study, we developed a new type of ionizable lipid S-1, which contains an amino head, a cholesterol matrix, and a long hydrophobic carbon tail. We employed microfluidics to rapidly mix an ethanol phase containing S-1 lipid with an aqueous mRNA to form mRNA/S-1 lipid nanoparticles (LNPs, 100-200 nm). We observed low cytotoxicity and high transfection efficiency in RAW264.7 and HCT-116 cell lines for mRNA/S-1 LNPs, comparable to mRNA/SM-102 LNPs. Based on the obtained findings, mRNA/S-1 LNPs have good stability, low cytotoxicity, high transfection efficiency, and enhanced cellular uptake. The synthesized S-1 lipid ensures efficient assembly of lipid nanoparticles, protects mRNA from RNase degradation, and enables the delivery of mRNA into the cytoplasm for translation.


Asunto(s)
Colesterol , Lípidos , Nanopartículas , ARN Mensajero , ARN Mensajero/genética , Humanos , Colesterol/química , Lípidos/química , Ratones , Animales , Nanopartículas/química , Células RAW 264.7 , Células HCT116 , Transfección/métodos , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos
3.
Mater Today Bio ; 24: 100925, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38226012

RESUMEN

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by the infiltration of inflammatory cells and proliferation of synovial cells. It can cause cartilage and bone damage as well as disability and is regarded as an incurable chronic disease. Available therapies cannot prevent the development of diseases due to the high toxicity of the therapeutic agents and the inefficient drug delivery. Ferroptosis, an iron-dependent manner of lipid peroxidative cell death, indicates great potential for RA therapy due to ability to damage the infiltrated inflammatory cells and proliferated fibroblast-like synoviocytes. Here, we use macrophages as vector to deliver Fe3O4 nanoparticles and sulfasalazine (SSZ) for ferroptosis and photothermal therapy of RA. The inherent property of migration towards the inflamed joints under the guidance of inflammatory factors enables macrophages to targetedly deliver the payload into the RA. Upon the irradiation of the near infrared light, the Fe3O4 nanoparticles convert the light into heat to damage the proliferated synovium. Meanwhile, the iron released from Fe3O4 nanoparticles works with SSZ to generate synergetic ferroptosis effect. The resident inflammatory cells and proliferated synovium are efficiently damaged by the ferroptosis and photothermal effect, showing pronounced therapeutic effect for RA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA