Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neural Netw ; 170: 548-563, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052151

RESUMEN

Siamese tracking has witnessed tremendous progress in tracking paradigm. However, its default box estimation pipeline still faces a crucial inconsistency issue, namely, the bounding box decided by its classification score is not always best overlapped with the ground truth, thus harming performance. To this end, we explore a novel simple tracking paradigm based on the intersection over union (IoU) value prediction. To first bypass this inconsistency issue, we propose a concise target state predictor termed IoUformer, which instead of default box estimation pipeline directly predicts the IoU values related to tracking performance metrics. In detail, it extends the long-range dependency modeling ability of transformer to jointly grasp target-aware interactions between target template and search region, and search sub-region interactions, thus neatly unifying global semantic interaction and target state prediction. Thanks to this joint strength, IoUformer can predict reliable IoU values near-linear with the ground truth, which paves a safe way for our new IoU-based siamese tracking paradigm. Since it is non-trivial to explore this paradigm with pleased efficacy and portability, we offer the respective network components and two alternative localization ways. Experimental results show that our IoUformer-based tracker achieves promising results with less training data. For its applicability, it still serves as a refinement module to consistently boost existing advanced trackers.


Asunto(s)
Benchmarking , Semántica
2.
Neural Netw ; 165: 705-720, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37385024

RESUMEN

Much progress has been made in siamese tracking, primarily benefiting from increasing huge training data. However, very little attention has been really paid to the role of huge training data in learning an effective siamese tracker. In this study, we undertake an in-depth analysis of this issue from a novel optimization perspective, and observe that training data is particularly adept at background suppression, thereby refining target representation. Inspired by this insight, we present a data-free siamese tracking algorithm named SiamDF, which requires only a pre-trained backbone and no further fine-tuning on additional training data. Particularly, to suppress background distractors, we separately improve two branches of siamese tracking by retaining the pure target region as target input with the removal of template background, and by exploring an efficient inverse transformation to maintain the constant aspect ratio of target state in search region. Besides, we further promote the center displacement prediction of the entire backbone by eliminating its spatial stride deviations caused by convolution-like quantification operations. Our experimental results on several popular benchmarks demonstrate that SiamDF, free from both offline fine-tuning and online update, achieves impressive performance compared to well-established unsupervised and supervised tracking methods.


Asunto(s)
Algoritmos , Aprendizaje , Benchmarking
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA