Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 21(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38132926

RESUMEN

Chitin/chitosan and collagen are two of the most important bioactive compounds, with applications in the pharmaceutical, veterinary, nutraceutical, cosmetic, biomaterials, and other industries. When extracted from non-edible parts of fish and shellfish, by-catches, and invasive species, their use contributes to a more sustainable and circular economy. The present article reviews the scientific knowledge and publication trends along the marine chitin/chitosan and collagen value chains and assesses how researchers, industry players, and end-users can bridge the gap between scientific understanding and industrial applications. Overall, research on chitin/chitosan remains focused on the compound itself rather than its market applications. Still, chitin/chitosan use is expected to increase in food and biomedical applications, while that of collagen is expected to increase in biomedical, cosmetic, pharmaceutical, and nutritional applications. Sustainable practices, such as the reuse of waste materials, contribute to strengthen both value chains; the identified weaknesses include the lack of studies considering market trends, social sustainability, and profitability, as well as insufficient examination of intellectual property rights. Government regulations, market demand, consumer preferences, technological advancements, environmental challenges, and legal frameworks play significant roles in shaping both value chains. Addressing these factors is crucial for seizing opportunities, fostering sustainability, complying with regulations, and maintaining competitiveness in these constantly evolving value chains.


Asunto(s)
Quitina , Quitosano , Colágeno , Animales , Materiales Biocompatibles/economía , Quitina/economía , Quitosano/economía , Cosméticos , Preparaciones Farmacéuticas , Mariscos , Colágeno/economía
2.
Animals (Basel) ; 11(6)2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34070251

RESUMEN

The global market of dried seahorses mainly supplies Traditional Chinese Medicine and still relies on blurry trade chains that often cover less sustainable practices targeting these pricey and endangered fish. As such, reliable tools that allow the enforcement of traceability, namely to confirm the geographic origin of traded seahorses, are urgently needed. The present study evaluated the use of elemental fingerprints (EF) in the bony structures of long-snouted seahorses Hippocampus guttulatus raised in captivity in two different locations (southern Portugal and Northern Spain) to discriminate their geographic origin. The EF of different body parts of H. guttulatus were also evaluated as potential proxies for the EF of the whole body, in order to allow the analysis of damaged specimens and avoid the use of whole specimens for analysis. The contrasting EF of H. guttulatus raised in the two locations allowed their reliable discrimination. Although no single body part exactly mimicked the EF of the whole body, seahorse trunks, as well as damaged specimens, could still be correctly allocated to their geographic origin. This promising forensic approach to discriminate the geographic origin of seahorses raised in captivity should now be validated for wild conspecifics originating from different locations, as well as for other species within genus Hippocampus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA