RESUMEN
Several COVID-19 vaccines use adenovirus vectors to deliver the SARS-CoV-2 spike (S) protein. Immunization with these vaccines promotes immunity against the S protein, but against also the adenovirus itself. This could interfere with the entry of the vaccine into the cell, reducing its efficacy. Herein, we evaluate the efficiency of an adenovirus-vectored vaccine (chimpanzee ChAdOx1 adenovirus, AZD1222) in boosting the specific immunity compared to that induced by a recombinant receptor-binding domain (RBD)-based vaccine without viral vector. Mice immunized with the AZD1222 human vaccine were given a booster 6 months later, with either the homologous vaccine or a recombinant vaccine based on RBD of the delta variant, which was prevalent at the start of this study. A significant increase in anti-RBD antibody levels was observed in rRBD-boosted mice (31-61%) compared to those receiving two doses of AZD1222 (0%). Significantly higher rates of PepMix™- or RBD-elicited proliferation were also observed in IFNγ-producing CD4 and CD8 cells from mice boosted with one or two doses of RBD, respectively. The lower efficiency of the ChAdOx1-S vaccine in boosting specific immunity could be the result of a pre-existing anti-vector immunity, induced by increased levels of anti-adenovirus antibodies found both in mice and humans. Taken together, these results point to the importance of avoiding the recurrent use of the same adenovirus vector in individuals with immunity and memory against them. It also illustrates the disadvantages of ChAdOx1 adenovirus-vectored vaccine with respect to recombinant protein vaccines, which can be used without restriction in vaccine-booster programs. KEY POINTS: ⢠ChAdOx1 adenovirus vaccine (AZD1222) may not be effective in boosting anti-SARS-CoV-2 immunity ⢠A recombinant RBD protein vaccine is effective in boosting anti-SARS-CoV-2 immunity in mice ⢠Antibodies elicited by the rRBD-delta vaccine persisted for up to 3 months in mice.
Asunto(s)
Vacunas contra el Adenovirus , COVID-19 , Vacunas , Humanos , Animales , Ratones , Pan troglodytes , ChAdOx1 nCoV-19 , Vacunas contra la COVID-19/genética , SARS-CoV-2 , COVID-19/prevención & control , Adenoviridae/genética , Vacunación , Anticuerpos Antivirales , Anticuerpos NeutralizantesRESUMEN
TNFAIP3 is a classical systemic lupus erythematosus (SLE)-associated risk locus identified by genome-wide association studies (GWASs) and replicated by candidate gene association studies primarily in Caucasians and Asians. However, in Latin American populations, its role on SLE susceptibility is not known. We conducted a case-control study to evaluate whether the TNFAIP3 rs2230926T/G (Phe127Cys) variant is associated with risk of developing SLE in a cohort of Mexican patients. The TNFAIP3 rs2230926T/G variant was analyzed in 561 patients with SLE and 499 control subjects, using TaqMan probes. We found that the G allele was associated with susceptibility to SLE under the allelic (OR 2.09, p = 0.005) and genotypic (OR 2.14, p = 0.004) models. In conclusion, our results show that TNFAIP3 rs2230926T/G is a risk factor for the development of SLE in the Mexican population.
Asunto(s)
Estudio de Asociación del Genoma Completo , Lupus Eritematoso Sistémico , Humanos , Estudios de Casos y Controles , América Latina , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Proteínas de Unión al ADN/genética , Lupus Eritematoso Sistémico/genética , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genéticaRESUMEN
Once regarded as inert organelles with limited and ill-defined roles, lipid droplets (LDs) have emerged as dynamic entities with multifaceted functions within the cell. Recent research has illuminated their pivotal role as primary energy reservoirs in the form of lipids, capable of being metabolized to meet cellular energy demands. Their high dynamism is underscored by their ability to interact with numerous cellular organelles, notably the endoplasmic reticulum (the site of LD genesis) and mitochondria, which utilize small LDs for energy production. Beyond their contribution to cellular bioenergetics, LDs have been associated with viral infections. Evidence suggests that viruses can co-opt LDs to facilitate their infection cycle. Furthermore, recent discoveries highlight the role of LDs in modulating the host's immune response. Observations of altered LD levels during viral infections suggest their involvement in disease pathophysiology, potentially through production of proinflammatory mediators using LD lipids as precursors. This review explores these intriguing aspects of LDs, shedding light on their multifaceted nature and implications in viral interactions and disease development.
RESUMEN
Background: The SARS-CoV-2 virus has caused unprecedented mortality since its emergence in late 2019. The continuous evolution of the viral genome through the concerted action of mutational forces has produced distinct variants that became dominant, challenging human immunity and vaccine development. Aim and methods: In this work, through an integrative genomic approach, we describe the molecular transition of SARS-CoV-2 by analyzing the viral whole genome sequences from 50 critical COVID-19 patients recruited during the first year of the pandemic in Mexico City. Results: Our results revealed differential levels of the evolutionary forces across the genome and specific mutational processes that have shaped the first two epidemiological waves of the pandemic in Mexico. Through phylogenetic analyses, we observed a genomic transition in the circulating SARS-CoV-2 genomes from several lineages prevalent in the first wave to a dominance of the B.1.1.519 variant (defined by T478K, P681H, and T732A mutations in the spike protein) in the second wave. Conclusion: This work contributes to a better understanding of the evolutionary dynamics and selective pressures that act at the genomic level, the prediction of more accurate variants of clinical significance, and a better comprehension of the molecular mechanisms driving the evolution of SARS-CoV-2 to improve vaccine and drug development.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Pandemias , México/epidemiología , Filogenia , Genoma Viral , MutaciónRESUMEN
Despite all successful efforts to develop a COVID-19 vaccine, the need to evaluate alternative antigens to produce next-generation vaccines is imperative to target emerging variants. Thus, the second generation of COVID-19 vaccines employ more than one antigen from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce an effective and lasting immune response. Here, we analyzed the combination of two SARS-CoV-2 viral antigens that could elicit a more durable immune response in both T- and B-cells. The nucleocapsid (N) protein, Spike protein S1 domain, and receptor binding domain (RBD) of the SARS-CoV-2 spike surface glycoproteins were expressed and purified in a mammalian expression system, taking into consideration the posttranscriptional modifications and structural characteristics. The immunogenicity of these combined proteins was evaluated in a murine model. Immunization combining S1 or RBD with the N protein induced higher levels of IgG antibodies, increased the percentage of neutralization, and elevated the production of cytokines TNF-α, IFN-γ, and IL-2 compared to the administration of a single antigen. Furthermore, sera from immunized mice recognized alpha and beta variants of SARS-CoV-2, which supports ongoing clinical results on partial protection in vaccinated populations, despite mutations. This study identifies potential antigens for second-generation COVID-19 vaccines.
RESUMEN
Background: The use of convalescent plasma (CP) has been considered for its immunological mechanisms that could benefit patients in moderate and severe stages of COVID-19. This study evaluated the safety and efficacy of the use of donor CP for COVID-19. Material and methods: A double-blind, randomized controlled clinical trial was conducted from May to October 2020. Thirty-nine participants with moderate (II) and severe (III) stages of COVID-19 confirmed by RT-PCR were included. The study randomization rate was set at 3:1. CPs were chosen for application with a neutralizing antibody titer of ≥1:32. Results: We observed a significantly lower 21-day post-transfusion mortality HR: 0.17 (95.0% CI [0.07−0.45, p < 0.001]) in the group receiving CP compared with the control group; protective units (PU) in the group receiving convalescent plasma after seven days were significantly higher (512 (32−16,384) vs. 96 (32−256), p = 0.01); the PAO2/FIO2 index showed a significant improvement in the group receiving CP (251.01 (109.4) vs. 109.2 (62.4), p < 0.001, in the control group). Conclusion: CP is safe and effective, as it decreased mortality in the CP group compared with the control group.
RESUMEN
OBJECTIVES: We evaluated the VE and the mutations of the viruses present in the Mexican population at the beginning of 2018. METHODS: We diagnosed influenza in outpatients with a high-performance Rapid Influenza Diagnostic Test (RIDT) qRT-PCR. Descriptive statistics were used to describe the study population, while the chi-square test was used to determine clinical variables. VE was analyzed through a negative test design. We sequenced the hemagglutinin (HA) gene, performed a phylogenetic analysis, and analyzed the nonsynonymous substitutions both in and outside antigenic sites. RESULTS: Of the 240 patients analyzed, 42.5% received the trivalent vaccine, and 37.5% were positive for influenza. The VE for the general population for any influenza virus type or subtype was 37.0%, while the VE for the predominant influenza A(H3N2) subtype was the lowest (19.7%). The phylogenetic analysis of HA showed the co-circulation of clades and subclades 3C.2a1, 3C.2a1b, 3C.2a2, 3C.2a2re, 3C.2a3, and 3C.3a with identities approximately 97-98% similar to the vaccine composition. CONCLUSION: Low VE was related to the co-circulation of multiple clades and subclades of influenza A(H3N2), with sufficient genetic and phenotypic distance to allow for the infection of vaccinated individuals.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Subtipo H3N2 del Virus de la Influenza A/genética , Filogenia , Estaciones del Año , México/epidemiología , Eficacia de las Vacunas , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , ARN Viral/genética , Variación Antigénica , Hemaglutininas/genéticaRESUMEN
The coronavirus SARS-CoV-2 has caused a pandemic with > 550 millions of cases and > 6 millions of deaths worldwide. Medical management of COVID-19 relies on supportive care as no specific targeted therapies are available yet. Given its devastating effects on the economy and mental health, it is imperative to develop novel antivirals. An ideal candidate will be an agent that blocks the early events of viral attachment and cell entry, thereby preventing viral infection and spread. This work reports functionalized titanium dioxide (TiO2)-based nanoparticles adsorbed with flavonoids that block SARS-CoV-2 entry and fusion. Using molecular docking analysis, two flavonoids were chosen for their specific binding to critical regions of the SARS-CoV-2 spike glycoprotein that interacts with the host cell angiotensin-converting enzyme-2 (ACE-2) receptor. These flavonoids were adsorbed onto TiO2 functionalized nanoparticles (FTNP). This new nanoparticulate compound was assayed in vitro against two different coronaviruses; HCoV 229E and SARS-CoV-2, in both cases a clear antiviral effect was observed. Furthermore, using a reporter-based cell culture model, a potent antiviral activity is demonstrated. The adsorption of flavonoids to functionalized TiO2 nanoparticles induces a ~ threefold increase of that activity. These studies also indicate that FTNP interferes with the SARS-CoV-2 spike, impairing the cell fusion mechanism. KEY POINTS/HIGHLIGHTS: ⢠Unique TiO2 nanoparticles displaying flavonoid showed potent anti-SARS-CoV-2 activity. ⢠The nanoparticles precisely targeting SARS-CoV-2 were quantitatively verified by cell infectivity in vitro. ⢠Flavonoids on nanoparticles impair the interactions between the spike glycoprotein and ACE-2 receptor.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanopartículas , Antivirales/química , Antivirales/farmacología , Flavonoides/farmacología , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , TitanioRESUMEN
PURPOSE: Rheumatoid arthritis (RA) and primary Sjögren's syndrome (pSS) are autoimmune diseases (ADs) characterized by joint damage and involvement of the salivary glands, respectively. ADs share some susceptibility loci, such as TNFSF4, which is a classical susceptibility gene associated with systemic lupus erythematosus, but its role in RA and pSS is not yet clear. Thus, the aim of this study was to determine whether three TNFSFS4 polymorphisms are associated with RA and pSS. METHODS: Our case-control study included 500 controls, 459 patients with RA, and 210 patients with pSS from Mexico. TNFSF4 single nucleotide polymorphisms (SNPs) rs1234315C/T, rs2205960G/T, and rs704840T/G were genotyped using TaqMan probes and discrimination allelic assay. RESULTS: The three TNFSF4 SNPs were associated with susceptibility to RA (rs1234315C/T: odds ratio [OR] 1.4, p = 0.01; rs2205960G/T: OR 1.23, p = 0.03; rs704840T/G: OR 1.24, p = 0.02). An association between TNFSF4 rs1234315C/T and pSS was also observed (OR 1.28, p = 0.04), however, after Bonferroni correction, this association was lost. CONCLUSION: Our data suggest that TNFSF4 could be a risk factor in RA but not pSS in a Mexican population.
Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Síndrome de Sjögren , Artritis Reumatoide/epidemiología , Artritis Reumatoide/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Humanos , Lupus Eritematoso Sistémico/epidemiología , Lupus Eritematoso Sistémico/genética , México/epidemiología , Ligando OX40/genética , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Síndrome de Sjögren/epidemiología , Síndrome de Sjögren/genéticaRESUMEN
After more than two years, the COVID-19 pandemic is still ongoing and evolving all over the world; human herd immunity against SARS-CoV-2 increases either by infection or by unprecedented mass vaccination. A substantial change in population immunity is expected to contribute to the control of transmission. It is essential to monitor the extension and duration of the population's immunity to support the decisions of health authorities in each region and country, directed to chart the progressive return to normality. For this purpose, the availability of simple and cheap methods to monitor the levels of relevant antibodies in the population is a widespread necessity. Here, we describe the development of an RBD-based ELISA for the detection of specific antibodies in large numbers of samples. The recombinant expression of an RBD-poly-His fragment was carried out using either bacterial or eukaryotic cells in in vitro culture. After affinity chromatography purification, the performance of both recombinant products was compared by ELISA in similar trials. Our results showed that eukaryotic RBD increased the sensitivity of the assay. Interestingly, our results also support a correlation of the eukaryotic RBD-based ELISA with other assays aimed to test for neutralizing antibodies, which suggests that it provides an indication of protective immunity against SARS-CoV-2.
RESUMEN
[This corrects the article DOI: 10.3389/fimmu.2021.633297.].
RESUMEN
This year, a respiratory virus caused an emergency pandemic alert in health services around the world, showing the need for biotechnological approaches to fight these diseases. The influenza virus is one of the main viral agents that generate pandemic outbreaks. Currently, the majority of co-circulating influenza A virus (IAV) strains are adamantine- and oseltamivir-resistant strains, and the challenge is to find new antivirals for more efficient treatments. The antiviral entry blocker (EB) peptide is a promising candidate for blocking the virus entry into cells. The aim of this research was to express the EB peptide in the microalgae Chlamydomonas reinhardtii and test its antiviral activity against IAV in vitro. The EB peptide nucleotide sequence was introduced into the nuclear genome of microalgae using Agrobacterium tumefaciens transformation. The EB peptide amount produced in transformed microalgae was 4.99 ± 0.067% of the total soluble protein. In hemagglutination inhibition assays using influenza A/H1N1 pdm and influenza A H1N1/Virginia/ATCC/2009 strains, we reported that the EB peptide extract from the microalgae showed 100-fold higher efficiency than the EB synthetic peptide. In addition, both the EB peptide extract and synthetic peptide inhibited viral replication in MDCK cells (IC50 = 20.7 nM and IC50 = 754.4 nM, respectively); however, the EB peptide extract showed a 32-fold higher antiviral effectiveness than the synthetic peptide against influenza A/H1N1 pdm. Extracts from untransformed and transformed microalgae and synthetic peptide did not show cytotoxic effect on MDCK cell monolayers. Thus, C. reinhardtii may be a fast, safe, and effective expression platform for production of peptides with significant antiviral activity and can be used as a prophylactic treatment to reduce viral propagation.
RESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is a global health threat with the potential to cause severe disease manifestations in the lungs. Although COVID-19 has been extensively characterized clinically, the factors distinguishing SARS-CoV-2 from other respiratory viruses are unknown. Here, we compared the clinical, histopathological, and immunological characteristics of patients with COVID-19 and pandemic influenza A(H1N1). We observed a higher frequency of respiratory symptoms, increased tissue injury markers, and a histological pattern of alveolar pneumonia in pandemic influenza A(H1N1) patients. Conversely, dry cough, gastrointestinal symptoms and interstitial lung pathology were observed in COVID-19 cases. Pandemic influenza A(H1N1) was characterized by higher levels of IL-1RA, TNF-α, CCL3, G-CSF, APRIL, sTNF-R1, sTNF-R2, sCD30, and sCD163. Meanwhile, COVID-19 displayed an immune profile distinguished by increased Th1 (IL-12, IFN-γ) and Th2 (IL-4, IL-5, IL-10, IL-13) cytokine levels, along with IL-1ß, IL-6, CCL11, VEGF, TWEAK, TSLP, MMP-1, and MMP-3. Our data suggest that SARS-CoV-2 induces a dysbalanced polyfunctional inflammatory response that is different from the immune response against pandemic influenza A(H1N1). Furthermore, we demonstrated the diagnostic potential of some clinical and immune factors to differentiate both diseases. These findings might be relevant for the ongoing and future influenza seasons in the Northern Hemisphere, which are historically unique due to their convergence with the COVID-19 pandemic.
Asunto(s)
COVID-19 , Citocinas , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Metaloproteinasa 1 de la Matriz , Metaloproteinasa 3 de la Matriz , Receptores Inmunológicos , Adulto , Anciano , COVID-19/sangre , COVID-19/epidemiología , COVID-19/inmunología , Citocinas/sangre , Citocinas/inmunología , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Gripe Humana/sangre , Gripe Humana/epidemiología , Gripe Humana/inmunología , Masculino , Metaloproteinasa 1 de la Matriz/sangre , Metaloproteinasa 1 de la Matriz/inmunología , Metaloproteinasa 3 de la Matriz/sangre , Metaloproteinasa 3 de la Matriz/inmunología , Persona de Mediana Edad , Estudios Prospectivos , Receptores Inmunológicos/sangre , Receptores Inmunológicos/inmunología , Células TH1/inmunología , Células Th2/inmunologíaRESUMEN
BLK and BANK1 in primary Sjögren's syndrome (pSS) have scarcely been evaluated and the results are inconclusive. The aim of our study was to determine whether single nucleotide variants (SNVs) located within BLK or BANK1 are associated with susceptibility, clinical and serological features, and smoking in pSS. BLK rs13277113A/G, BANK1 rs10516487G/A and rs3733197G/A were genotyped in 203 cases and 424 controls using a TaqMan® SNP genotyping assay. The BLK rs13277113A allele showed association with pSS under the allelic (OR 1.35, p = 0.02), and recessive (OR 1.83, p = 0.003) model, while, BANK1 rs3733197G/A showed association under the dominant model (OR 2.90, p = 0.043). Interactions between BANK1 and BLK genotypes also showed association (OR 2.36, p < 0.0001). In addition, BLK rs13277113A/G was associated with protection against arthritis and BANK1 rs10516487G/A with both arthritis and keratoconjunctivitis sicca, meanwhile, BANK1 rs3733197G/A was associated with smoking in patients with pSS. This is the first study to describe an association between BLK and susceptibility to pSS in a Latin-American population. Our data also shows a first evidence of association between interactions of BLK and BANK1 in pSS, and association of BLK and BANK1with arthritis, keratoconjunctivitis sicca and smoking in patients with pSS.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de la Membrana/genética , Síndrome de Sjögren/genética , Familia-src Quinasas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anciano , Artritis Reumatoide/genética , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Proteínas de la Membrana/metabolismo , México/epidemiología , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Síndrome de Sjögren/metabolismo , Familia-src Quinasas/metabolismoRESUMEN
The C-X-C motif chemokine ligand 17 (CXCL17) is chemotactic for myeloid cells, exhibits bactericidal activity, and exerts anti-viral functions. This chemokine is constitutively expressed in the respiratory tract, suggesting a role in lung defenses. However, little is known about the participation of CXCL17 against relevant respiratory pathogens in humans. Here, we evaluated the serum levels and lung tissue expression pattern of CXCL17 in a cohort of patients with severe pandemic influenza A(H1N1) from Mexico City. Peripheral blood samples obtained on admission and seven days after hospitalization were processed for determinations of serum CXCL17 levels by enzyme-linked immunosorbent assay (ELISA). The expression of CXCL17 was assessed by immunohistochemistry (IHQ) in lung autopsy specimens from patients that succumbed to the disease. Serum CXCL17 levels were also analyzed in two additional comparative cohorts of coronavirus disease 2019 (COVID-19) and pulmonary tuberculosis (TB) patients. Additionally, the expression of CXCL17 was tested in lung autopsy specimens from COVID-19 patients. A total of 122 patients were enrolled in the study, from which 68 had pandemic influenza A(H1N1), 24 had COVID-19, and 30 with PTB. CXCL17 was detected in post-mortem lung specimens from patients that died of pandemic influenza A(H1N1) and COVID-19. Interestingly, serum levels of CXCL17 were increased only in patients with pandemic influenza A(H1N1), but not COVID-19 and PTB. CXCL17 not only differentiated pandemic influenza A(H1N1) from other respiratory infections but showed prognostic value for influenza-associated mortality and renal failure in machine-learning algorithms and regression analyses. Using cell culture assays, we also identified that human alveolar A549 cells and peripheral blood monocyte-derived macrophages increase their CXCL17 production capacity after influenza A(H1N1) pdm09 virus infection. Our results for the first time demonstrate an induction of CXCL17 specifically during pandemic influenza A(H1N1), but not COVID-19 and PTB in humans. These findings could be of great utility to differentiate influenza and COVID-19 and to predict poor prognosis specially at settings of high incidence of pandemic A(H1N1). Future studies on the role of CXCL17 not only in severe pandemic influenza, but also in seasonal influenza, COVID-19, and PTB are required to validate our results.
Asunto(s)
Biomarcadores/metabolismo , Quimiocinas CXC/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/diagnóstico , Pulmón/metabolismo , Mycobacterium tuberculosis/fisiología , SARS-CoV-2/fisiología , Adulto , Anciano , COVID-19/diagnóstico , COVID-19/mortalidad , Quimiocinas CXC/genética , Quimiocinas CXC/inmunología , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Gripe Humana/mortalidad , Pulmón/patología , Masculino , México , Persona de Mediana Edad , Pandemias , Evaluación del Resultado de la Atención al Paciente , Pronóstico , Análisis de Supervivencia , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/mortalidad , Adulto JovenRESUMEN
OBJECTIVE: The aim of this study was to examine the association of three TNFSF4 single nucleotide variants (SNVs) with systemic lupus erythematosus (SLE) susceptibility in Mexican patients. METHODS: Genotypes of the TNFSF4 rs1234315T/C, rs2205960G/T, and rs704840T/G SNVs were determined using a TaqMan assay. In our study, we included 395 patients with SLE and 500 controls. RESULTS: Our information shows a significant difference in the allelic and genotypic frequency of the three TNFSF4 SNVs between cases and controls. Thus, our data showed an association between TNFSF4 rs1234315T/C (T vs. C, OR 1.40, p = 0.00087), rs2205960G/T (G vs. T, OR 1.32, p = 0.0037), and rs704840T/G (T vs. G, OR 1.41, p = 0.0003) and SLE susceptibility in Mexican subjects. Besides, we conducted a meta-analysis to determine the role of TNFSF4 rs2205960G/T and SLE susceptibility; our results showed that this variant is a risk factor for SLE in Latin Americans and Asians. CONCLUSION: Our results show that TNFSF4 rs1234315T/C, rs2205960G/T, and rs704840T/G are risk factors to SLE in Mexicans. This is the first study to document an association between TNFSF4 rs704840T/G and SLE in a Latin American population. In addition, our meta-analysis showed that TNFSF4 rs2205960G/T is a risk factor for Asians and Latin Americans. Key Point ⢠The TNFSF4 rs1234315T/C, rs2205960G/T, and rs704849T/G SNVs are risk factors to SLE in patients from Mexico.
Asunto(s)
Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico , Genotipo , Humanos , América Latina/epidemiología , Lupus Eritematoso Sistémico/genética , México , Ligando OX40/genética , Polimorfismo de Nucleótido Simple , Factores de RiesgoRESUMEN
A hypoxic microenvironment is a hallmark in different types of tumors; this phenomenon participates in a metabolic alteration that confers resistance to treatments. Because of this, it was proposed that a combination of 2-methoxyestradiol (2-ME) and sodium dichloroacetate (DCA) could reduce this alteration, preventing proliferation through the reactivation of aerobic metabolism in lung adenocarcinoma cell line (A549). A549 cells were cultured in a hypoxic chamber at 1% O2 for 72 hours to determine the effect of this combination on growth, migration, and expression of hypoxia-inducible factors (HIFs) by immunofluorescence. The effect in the metabolism was evaluated by the determination of glucose/glutamine consumption and the lactate/glutamate production. The treatment of 2-ME (10 µM) in combination with DCA (40 mM) under hypoxic conditions showed an inhibitory effect on growth and migration. Notably, this reduction could be attributed to 2-ME, while DCA had a predominant effect on metabolic activity. Moreover, this combination decreases the signaling of HIF-3α and partially HIF-1α but not HIF-2α. The results of this study highlight the antitumor activity of the combination of 2-ME 10 µl/DCA 40 mM, even in hypoxic conditions.
Asunto(s)
2-Metoxiestradiol/uso terapéutico , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ácido Dicloroacético/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Hipoxia Tumoral , Microambiente Tumoral , 2-Metoxiestradiol/farmacología , Células A549 , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ácido Dicloroacético/farmacología , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Neoplasias Pulmonares/patología , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos , Hipoxia Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacosRESUMEN
BACKGROUND: Influenza virus infection is often complicated by a bacterial infection, with this coinfection causing severe pneumonia. If not timely treated, the disease can cause death. OBJECTIVE: To demonstrate, in animal models, that coinfection with influenza virus and bacteria that affect the respiratory tract causes multisystemic damage. METHOD: Six groups of mice were formed: a control group, one infected with the influenza virus, two infected with bacteria: Haemophilus influenzae and Streptococcus pneumoniae, respectively; and two co-infected with influenza virus and Haemophilus influenzae or Streptococcus pneumoniae, respectively. RESULTS: Of the six groups of mice, only the group co-infected with influenza virus and Streptococcus pneumoniae showed damage to thoracic and abdominal organs. A decrease in serum cytokine levels was found in all study groups, which was more pronounced in the co-infected mice. CONCLUSIONS: The groups of mice infected with Streptococcus pneumoniae or influenza virus alone showed no damage, which indicates that coexistence of these infections caused the damage in the group of co-infected mice.
ANTECEDENTES: La infección por el virus de la influenza con frecuencia se complica con una infección bacteriana, coinfección que provoca cuadros graves de neumonía, la cual puede ocasionar la muerte si no es tratada en forma oportuna. OBJETIVO: Demostrar en modelos animales que la coinfección por el virus de la influenza y bacterias que afectan el tracto respiratorio ocasiona daño multisistémico. MÉTODO: Se formaron seis grupos de ratones: un grupo control, uno infectado de virus de la influenza, dos infectados de bacterias: Haemophilus influenzae y Streptococcus pneumoniae, respectivamente; y dos coinfectados de virus de la influenza y Haemophilus influenzae y Streptococcus pneumoniae, respectivamente. RESULTADOS: De los seis grupos de ratones, solo en el grupo coinfectado de virus de la influenza y Streptococcus pneumoniae se observó daño en órganos torácicos y abdominales. En todos los grupos se encontró disminución de los niveles séricos de las citocinas, mayor en los ratones coinfectados. CONCLUSIONES: Los grupos de ratones infectados solo de Streptococcus pneumoniae o el virus de la influenza no presentaron daños, lo cual indica que la coexistencia de estas infecciones fue la que ocasionó el daño en el grupo de ratones coinfectados.
Asunto(s)
Infecciones por Haemophilus/fisiopatología , Infecciones por Orthomyxoviridae/fisiopatología , Infecciones Neumocócicas/fisiopatología , Animales , Coinfección/fisiopatología , Citocinas/sangre , Modelos Animales de Enfermedad , Infecciones por Haemophilus/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Infecciones Neumocócicas/microbiología , Neumonía/microbiología , Neumonía/fisiopatología , Neumonía/virología , Streptococcus pneumoniae/aislamiento & purificaciónRESUMEN
Abstract Background: Influenza virus infection is often complicated by a bacterial infection, with this coinfection causing severe pneumonia. If not timely treated, the disease can cause death. Objective: To demonstrate, in animal models, that coinfection with influenza virus and bacteria that affect the respiratory tract causes multisystemic damage. Method: Six groups of mice were formed: a control group, one infected with the influenza virus, two infected with bacteria: Haemophilus influenzae and Streptococcus pneumoniae, respectively; and two co-infected with influenza virus and Haemophilus influenzae or Streptococcus pneumoniae, respectively. Results: Of the six groups of mice, only the group co-infected with influenza virus and Streptococcus pneumoniae showed damage to thoracic and abdominal organs. A decrease in serum cytokine levels was found in all study groups, which was more pronounced in the co-infected mice. Conclusions: The groups of mice infected with Streptococcus pneumoniae or influenza virus alone showed no damage, which indicates that coexistence of these infections caused the damage in the group of co-infected mice.
Resumen Antecedentes: La infección por el virus de la influenza con frecuencia se complica con una infección bacteriana, coinfección que provoca cuadros graves de neumonía, la cual puede ocasionar la muerte si no es tratada en forma oportuna. Objetivo: Demostrar en modelos animales que la coinfección por el virus de la influenza y bacterias que afectan el tracto respiratorio ocasiona daño multisistémico. Método: Se formaron seis grupos de ratones: un grupo control, uno infectado de virus de la influenza, dos infectados de bacterias: Haemophilus influenzae y Streptococcus pneumoniae, respectivamente; y dos coinfectados de virus de la influenza y Haemophilus influenzae y Streptococcus pneumoniae, respectivamente. Resultados: De los seis grupos de ratones, solo en el grupo coinfectado de virus de la influenza y Streptococcus pneumoniae se observó daño en órganos torácicos y abdominales. En todos los grupos se encontró disminución de los niveles séricos de las citocinas, mayor en los ratones coinfectados. Conclusiones: Los grupos de ratones infectados solo de Streptococcus pneumoniae o el virus de la influenza no presentaron daños, lo cual indica que la coexistencia de estas infecciones fue la que ocasionó el daño en el grupo de ratones coinfectados.
Asunto(s)
Animales , Masculino , Ratas , Infecciones Neumocócicas/fisiopatología , Infecciones por Orthomyxoviridae/fisiopatología , Infecciones por Haemophilus/fisiopatología , Infecciones Neumocócicas/microbiología , Neumonía/fisiopatología , Neumonía/microbiología , Neumonía/virología , Streptococcus pneumoniae/aislamiento & purificación , Citocinas/sangre , Infecciones por Orthomyxoviridae/virología , Modelos Animales de Enfermedad , Coinfección/fisiopatología , Infecciones por Haemophilus/microbiología , Ratones Endogámicos BALB CRESUMEN
hScrib and hDlg belong to the PDZ family of proteins. Since the identification of these highly phylogenetically conserved scaffolds, an increasing amount of experiments has elucidated the roles of hScrib and hDlg in a variety of cell functions. Remarkably, their participation during the establishment of polarity in epithelial cells is well documented. Although the role of both proteins in the immune system is scantly known, it has become a growing field of investigation. Here, we summarize the interactions and functions of hScrib and hDlg1, which participate in diverse functions involving cell polarization in immune cells, and discuss their relevance in the immune cell biology. The fundamental role of hScrib and hDlg1 during the establishment of the immunological synapse, hence T cell activation, and the recently described role of hScrib in reactive oxygen species production in macrophages and of hDlg1 in cytokine production by dendritic cells highlight the importance of both proteins in immune cell biology. The expression of these proteins in other leukocytes can be anticipated and needs to be confirmed. Due to their multiple interaction domains, there is a wide range of possible interactions of hScrib and hDlg1 that remains to be explored in the immune system.