Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(38): 15608-15618, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37706502

RESUMEN

This paper reports on the long-standing puzzle of the atomic structure of the Ag/α-Al2O3(0001) interface by combining X-ray absorption spectroscopy, to determine Ag local environment [i.e. average Ag-Ag (dAg-Ag) and Ag-O (dAg-O) interatomic distances and Ag coordination numbers (CN)], and numerical simulations on nanometric-sized particles. The experimental key was the capability of a structural study of clusters involving only a few atoms. The concomitant decrease of dAg-Ag and CN with decreasing cluster size provides unambiguous fingerprints for the dimensionality of the Ag clusters in the subnanometric regime leading to a series of unexpected results regarding the size-dependent interface structures. At low coverage, Ag atoms sit on surface Al sites to form buckled monolayer-thick islands associated with a Ag-Ag distance (2.75 Å) which fits the alumina lattice. Upon increasing Ag coverage, as 3D clusters appear, the Ag interface atoms tend to leave Al sites to sit atop O atoms as dAg-Ag increases. The then highlighted size-dependent evolution, is built on structural models which seemed so far contradictory in a static vision of the interface. Theory generalizes the case as it predicts the existence of alumina-supported 2D clusters of Pd and Pt at small coverage and a similar 2D-3D transition upon increasing the size. The structural transformation from 2D Ag clusters to macroscopic 3D islands is accompanied by a noticeable reduction of adhesion energy at the Ag/α-Al2O3(0001) interface.

2.
Phys Chem Chem Phys ; 23(38): 21852-21862, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34554163

RESUMEN

The Cr/α-Al2O3(0001) interface has been explored by X-ray photoemission spectroscopy, X-ray absorption spectroscopy (XAS) and ab initio first-principles calculations of core level shifts including final state effects. After an initial oxidation via a reaction with residual surface OH but no reduction of the alumina substrate, Cr grows in a metallic form without any chemical effect on the initially oxidized Cr. However, Cr metal lacks crystallinity. Long-range (reflection high energy electron diffraction) and short-range (XAS) order are hardly observed. Thus photoemission combined with atomistic simulations becomes a unique tool to explore the chemistry and environment at the Cr/alumina interface. Cr 2p, O 1s and Al 2s shifted components are all explained by the formation of moieties involving Cr3+ and/or Cr4+ and of metallic Cr0, which supports the previously found Cr buffer mechanism for poorly adhesive metals. Beyond the situation under study, the present data demonstrate the ability of a combined experimental and theoretical approach of core-level shifts to exhaustively describe the general case of disordered metal/oxide interfaces.

3.
J Phys Chem C Nanomater Interfaces ; 123(22): 13545-13550, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31205578

RESUMEN

The (011) termination of rutile TiO2 is reported to be particularly effective for photocatalysis. Here, the structure of the interface formed between this substrate and water is revealed using surface X-ray diffraction. While the TiO2(011) surface exhibits a (2 × 1) reconstruction in ultra-high vacuum (UHV), this is lifted in the presence of a multilayer of water at room temperature. This change is driven by the formation of Ti-OH at the interface, which has a bond distance of 1.93 ± 0.02 Å. The experimental solution is in good agreement with density functional theory and first-principles molecular dynamics calculations. These results point to the important differences that can arise between the structure of oxide surfaces in UHV and technical environments and will ultimately lead to an atomistic understanding of the photocatalytic process of water splitting on TiO2 surfaces.

4.
J Phys Chem Lett ; 9(11): 3131-3136, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29768922

RESUMEN

Elucidating the structure of the interface between natural (reduced) anatase TiO2 (101) and water is an essential step toward understanding the associated photoassisted water splitting mechanism. Here we present surface X-ray diffraction results for the room temperature interface with ultrathin and bulk water, which we explain by reference to density functional theory calculations. We find that both interfaces contain a 25:75 mixture of molecular H2O and terminal OH bound to titanium atoms along with bridging OH species in the contact layer. This is in complete contrast to the inert character of room temperature anatase TiO2 (101) in ultrahigh vacuum. A key difference between the ultrathin and bulk water interfaces is that in the latter water in the second layer is also ordered. These molecules are hydrogen bonded to the contact layer, modifying the bond angles.

5.
Phys Chem Chem Phys ; 19(16): 10350-10357, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28379222

RESUMEN

Orientation-dependent reactivity and band-bending are evidenced upon Ti deposition (1-10 Å) on polar ZnO(0001)-Zn and ZnO(0001[combining macron])-O surfaces. At the onset of the Ti deposition, a downward band-bending was observed on ZnO(0001[combining macron])-O while no change occurred on ZnO(0001)-Zn. Combining this with the photoemission analysis of the Ti 2p core level and Zn L3(L2)M45M45 Auger transition, it is established that the Ti/ZnO reaction is of the form Ti + 2ZnO → TiO2 + 2Zn on ZnO(0001)-Zn and Ti + yZnO → TiZnxOy + (y - x)Zn on ZnO(0001[combining macron])-O. Consistently, upon annealing thicker Ti adlayers, the metallic zinc is removed to leave ZnO(0001)-Zn surfaces covered with a TiO2-like phase and ZnO(0001[combining macron])-O surfaces covered with a defined (Ti, Zn, O) compound. Finally, a difference in the activation temperature between the O-terminated (500 K) and Zn-terminated (700 K) surfaces is observed, which is tentatively explained by different electric fields in the space charge layer at ZnO surfaces.

6.
J Phys Chem Lett ; 7(16): 3223-8, 2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27453254

RESUMEN

The wealth of properties of titanium dioxide relies on its various polymorphs and on their mixtures coupled with a sensitivity to crystallographic orientations. It is therefore pivotal to set out methods that allow surface structural identification. We demonstrate herein the ability of photoemission spectroscopy to provide Ti LMV (V = valence) Auger templates to quantitatively analyze TiO2 polymorphs. The Ti LMV decay reflects Ti 4sp-O 2p hybridizations that are intrinsic properties of TiO2 phases and orientations. Ti LMV templates collected on rutile (110), anatase (101), and (100) single crystals allow for the quantitative analysis of mixed nanosized powders, which bridges the gap between surfaces of reference and complex materials. As a test bed, the anatase/rutile P25 is studied both as received and during the anatase-to-rutile transformation upon annealing. The agreement with X-ray diffraction measurements proves the reliability of the Auger analysis and highlights its ability to detect surface orientations.

7.
J Phys Chem C Nanomater Interfaces ; 120(14): 7586-7590, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27110318

RESUMEN

The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC.

8.
Nano Lett ; 16(4): 2574-9, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26943368

RESUMEN

Surface stress and energy are basic quantities in the Gibbsian formulation of the thermodynamic description of surfaces which is central in the formation and long-term behavior of materials at the nanoscale. However, their size dependence is a puzzling issue. It is even unclear whether they decrease or increase with decreasing particle size. In addition, for a given metal, estimates often span over an order of magnitude, far apart from bulk data, which, in the absence of any explicit size-dependence rule, escapes understanding. Here, we combine X-ray absorption and nanoplasmonics data with atomistic simulation to describe α-Al2O3(0001)-supported silver particles. By comparison to MgO(001)-supported and embedded silver, we distinguish epitaxial and surface stress. The latter is shown to dominate above 3 nm in size. Since the observation mostly relies on surface/bulk ratio, a metal-independent picture emerges that is expected to have far-reaching consequences for the understanding of the energetics of nanoparticles.


Asunto(s)
Óxido de Aluminio/química , Óxido de Magnesio/química , Plata/química , Estrés Mecánico , Propiedades de Superficie
9.
Sci Rep ; 3: 1270, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23429300

RESUMEN

With modern scanning probe microscopes, it is possible to manipulate surface structures even at the atomic level. However, manipulation of nanoscale objects such as clusters is often more relevant and also more challenging due to the complicated interactions between the surface, cluster and apparatus. We demonstrate the manipulation of nanometer scale gold clusters on the NaCl(001) surface with a non-contact atomic force microscope, and show that the movement of clusters is in certain cases constrained to specific crystallographic directions. First principles calculations explain this kinetic anisotropy as the result of the cluster attaching to surface defects: cation vacancies allow the clusters to bond in such a way that they only move in one direction. Constraining the movement of clusters could be exploited in the construction of nanostructures or nanomechanical devices, and the manipulation signatures may also be used for identifying cluster-defect complexes.

10.
Proc Natl Acad Sci U S A ; 107(6): 2391-6, 2010 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-20133773

RESUMEN

Oxygen vacancies on metal oxide surfaces have long been thought to play a key role in the surface chemistry. Such processes have been directly visualized in the case of the model photocatalyst surface TiO(2)(110) in reactions with water and molecular oxygen. These vacancies have been assumed to be neutral in calculations of the surface properties. However, by comparing experimental and simulated scanning tunneling microscopy images and spectra, we show that oxygen vacancies act as trapping centers and are negatively charged. We demonstrate that charging the defect significantly affects the reactivity by following the reaction of molecular oxygen with surface hydroxyl formed by water dissociation at the vacancies. Calculations with electronically charged hydroxyl favor a condensation reaction forming water and surface oxygen adatoms, in line with experimental observations. This contrasts with simulations using neutral hydroxyl where hydrogen peroxide is found to be the most stable product.


Asunto(s)
Electrones , Modelos Químicos , Oxígeno/química , Titanio/química , Algoritmos , Simulación por Computador , Radical Hidroxilo/química , Microscopía de Túnel de Rastreo , Modelos Moleculares , Propiedades de Superficie , Agua/química
11.
Nano Lett ; 9(1): 155-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19113893

RESUMEN

Palladium nanoparticles supported on rutile TiO(2)(110)-1 x 1 have been studied using the complementary techniques of scanning tunneling microscopy and X-ray photoemission electron microscopy. Two distinct types of palladium nanoparticles are observed, namely long nanowires up to 1000 nm long, and smaller dotlike features with diameters ranging from 80-160 nm. X-ray photoemission electron microscopy reveals that the nanoparticles are composed of metallic palladium, separated by the bare TiO(2)(110) surface.


Asunto(s)
Cristalización/métodos , Nanotecnología/métodos , Nanotubos/química , Nanotubos/ultraestructura , Paladio/química , Titanio/química , Conductividad Eléctrica , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA