Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(12)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36559265

RESUMEN

Magnetic nanosystems (MNSs) consisting of magnetic iron oxide nanoparticles (IONPs) coated by human serum albumin (HSA), commonly used as a component of hybrid nanosystems for theranostics, were engineered and characterized. The HSA coating was obtained by means of adsorption and free radical modification of the protein molecules on the surface of IONPs exhibiting peroxidase-like activity. The generation of hydroxyl radicals in the reaction of IONPs with hydrogen peroxide was proven by the spin trap technique. The methods of dynamic light scattering (DLS) and electron magnetic resonance (EMR) were applied to confirm the stability of the coatings formed on the surface of the IONPs. The synthesized MNSs (d ~35 nm by DLS) were intraarterially administered in tumors implanted to rats in the dose range from 20 to 60 µg per animal and studied in vivo as a contrasting agent for computed tomography. The long-term (within 14 days of the experiment) presence of the MNSs in the tumor vascular bed was detected without immediate or delayed adverse reactions and significant systemic toxic effects during the observation period. The peroxidase-like activity of MNSs was proven by the colorimetric test with o-phenylenediamine (OPD) as a substrate. The potential of the synthesized MNSs to be used for theranostics, particularly, in oncology, was discussed.

2.
J Therm Anal Calorim ; 147(9): 5511-5518, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283663

RESUMEN

The paper reports the spectrofluorimetric and calorimetric study of binding of two hydrophobic biologically active molecules with antioxidant ability, flavonoids quercetin, and curcumin, to human serum albumin (HSA) in water, aqueous DMSO (0.05 and 0.1 mol. fraction of DMSO), and aqueous ethanol (0.05 mol. fraction of EtOH). Both flavonoids induce the quenching of HSA fluorescence. The stability constants of associates, as well as the changes in enthalpy of the reaction between quercetin and protein, were evaluated. The influence of solvent composition and additions of hydroxypropyl-ß-cyclodextrin as a solubilizer of hydrophobic molecules, on the association processes is discussed. Supplementary Information: The online version contains supplementary material available at 10.1007/s10973-022-11216-8.

3.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36613788

RESUMEN

A novel amphiphilic cationic chlorin e6 derivative was investigated as a promising photosensitizer for photodynamic therapy. Two cationic -N(CH3)3+ groups on the periphery of the macrocycle provide additional hydrophilization of the molecule and ensure its electrostatic binding to the mitochondrial membranes and bacterial cell walls. The presence of a hydrophobic phytol residue in the same molecule results in its increased affinity towards the phospholipid membranes while decreasing its stability towards aggregation in aqueous media. In organic media, this chlorin e6 derivative is characterized by a singlet oxygen quantum yield of 55%. Solubilization studies in different polymer- and surfactant-based supramolecular systems revealed the effective stabilization of this compound in a photoactive monomolecular form in micellar nonionic surfactant solutions, including Tween-80 and Cremophor EL. A novel cationic chlorin e6 derivative also demonstrates effective binding towards serum albumin, which enhances its bioavailability and promotes effective accumulation within the target tissues. Laser confocal scanning microscopy demonstrates the rapid intracellular accumulation and distribution of this compound throughout the cells. Together with low dark toxicity and a rather good photostability, this compound demonstrates significant phototoxicity against HeLa cells causing cellular damage most likely through reactive oxygen species generation. These results demonstrate a high potential of this derivative for application in photodynamic therapy.


Asunto(s)
Clorofilidas , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Células HeLa , Fotoquimioterapia/métodos , Porfirinas/farmacología , Porfirinas/química
4.
Prep Biochem Biotechnol ; 52(7): 800-808, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34751636

RESUMEN

The magnetic particles modified with silicon dioxide (SiO2) and amino groups (-NH2), as well as the magnetic particles modified with human serum albumin (HSA) were synthesized using the approaches we developed before and characterized by physico-chemical methods in this study. Plasminogen was chosen as a model protein since plasminogen plays a major role in the fibrinolytic system and plasminogen level correlates with different pathologies and conditions. For the first time it has been carried out qualitative and quantitative assessment of plasminogen nonspecific binding (noncovalent adsorption) by the particles in buffer and plasma solutions. The fibrinolytic activity of plasminogen on the surface of the particles has been measured by the aid of commercially available kits and appeared to be 28-30% of its initial value. Plasminogen desorption from the surface of particles was studied in phosphate buffer with NaCl and ε-aminocaproic acid. Despite nonspecific plasminogen binding is an undesirable process, the data obtained is valuable for further modification of particles for high-specific proteins extraction from biological fluids or transport of plasminogen by the particles. The perspectives of particles modified with SiO2 and -NH2, and particles modified with HSA for isolation of protein analytes and their quantitative assessment thereafter have been discussed.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Adsorción , Humanos , Nanopartículas Magnéticas de Óxido de Hierro , Nanopartículas de Magnetita/química , Plasminógeno/metabolismo , Proteínas , Albúmina Sérica Humana , Dióxido de Silicio/química
5.
Int J Biol Macromol ; 194: 654-665, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34813783

RESUMEN

Human serum albumin (HSA) is a very well-characterized protein, which has already been used for many biocompatible coatings. We hypothesized binding between HSA and magnetic iron oxide nanoparticles (MNPs) as well as HSA coating stability to be pH- and ionic strength-dependent. The impact of phosphate buffer on protein coating was studied at varying pH (6.0, 6.6, and 7.5) and ionic strengths (0.15 and 0.30 M NaCl) using different physicochemical methods. In addition, the stability of HSA coatings on MNPs was studied by means of UV/visible spectrophotometry, dynamic light scattering, and electron magnetic resonance. We used differential scanning calorimetry (DSC) to determine the differences in the change of enthalpies and denaturation temperatures of HSA in various buffer conditions and on the surface of the particles. The binding thermodynamics of HSA and MNPs were determined by isothermal titration calorimetry (ITC), and it was also dependent on pH and ionic strength. The stability of adsorbed layer on MNPs decreases with increasing pH [from weakly acidic (pH 6.0-6.6) to slightly alkaline (pH 7.5)], as well as with an increase of ionic strength. This study develops stable HSA coating on MNPs which might be applied to a wide range of biomedical applications.


Asunto(s)
Nanopartículas Magnéticas de Óxido de Hierro/química , Albúmina Sérica Humana/química , Concentración de Iones de Hidrógeno , Concentración Osmolar , Termodinámica
6.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140300, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676449

RESUMEN

The study is devoted to the oxidative modification of immunoglobulin G (IgG) on the surface of peroxidase-like iron oxide magnetic nanoparticles (MNPs) under conditions of induced reactive oxygen species (ROS) generation and without them. A pronounced change of thermodynamic parameters of denaturation has been detected for IgG in solutions containing MNPs under hydrogen peroxide action during 24 h of incubation. Dynamic light scattering measurements and UV-Visible spectrophotometry have been used to show aggregation in these solutions. Ferromagnetic resonance (FMR) was used to compare IgG coating thickness on individual MNPs under conditions of induced ROS generation and without them. The similarity between IgG adsorption on MNPs under these conditions after 24 h of incubation has been confirmed by the fluorescence measurements. The sites of IgG oxidative modifications that take place on MNPs surface and some evidences of the influence of oxidative modification and adsorption on the chemical structure of IgG were revealed by HPLC MS/MS analysis.


Asunto(s)
Peróxido de Hidrógeno/química , Inmunoglobulina G/química , Nanopartículas de Magnetita/química , Adsorción , Cromatografía Líquida de Alta Presión , Peroxidasas/química , Espectrometría de Masas en Tándem
7.
Biochim Biophys Acta Proteins Proteom ; 1866(8): 875-884, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29738861

RESUMEN

Plasma fibrin-stabilizing factor (pFXIII) is a heterotetrameric proenzyme composed of two catalytic A subunits (FXIII-A2) and two inhibitory/carrier B subunits (FXIII-B2). The main function of the protein is the formation of cross-links between the polypeptide chains of the fibrin clot. The conversion of pFXIII into the enzymatic form FXIII-A2* is a multistage process. Like many other blood plasma proteins, pFXIII is an oxidant-susceptible target. The influence of distinct sites susceptible to oxidation-mediated modifications on the changes in the structural-functional characteristics of the protein remains fully unexplored. For the first time, a set of the oxidation sites within FXIII-A2 under ozone-induced oxidation of pFXIII at different stages of its activation have been identified by mass spectrometry, and the extent as well as the chemical nature of these modifications have been explored. It was shown that the set of amino acid residues susceptible to oxidative attack and the degree of oxidation of these residues in FXIII-A2 of non-activated pFXIII, pFXIII activated by Ca2+ and fully activated pFXIII treated with thrombin and Ca2+ significantly differ. The obtained data enable one to postulate that in the process of the proenzyme conversion into FXIII-A2*, new earlier-unexposed amino acid residues become available for the oxidizer while some of the initially surface-exhibited residues are buried within the protein globule.


Asunto(s)
Dominio Catalítico , Factor XIII/metabolismo , Fibrina/metabolismo , Plasma/metabolismo , Secuencia de Aminoácidos , Humanos , Oxidación-Reducción , Ozono/metabolismo , Conformación Proteica , Espectrometría de Masas en Tándem , Trombina/metabolismo
8.
Free Radic Res ; 52(1): 14-38, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29284315

RESUMEN

Proteins represent extremely susceptible targets for oxidants. Oxidative modifications of proteins may bring about violation of their structure and functionality. It implies that the structures of proteins are not infallible in terms of their antioxidant defence. The protection mechanisms in preventing oxidative damages for proteins within cells are mainly related to a large variety of antioxidant enzymatic systems. In contrast, plasma proteins are scarcely protected by these systems, so the mechanism that provides their functioning in the conditions of generating reactive oxygen species (ROS) seems to be much more complicated. Oxidation of many proteins was long considered as a random process. However, the highly site-specific oxidation processes was convincingly demonstrated for some proteins, indicating that protein structure could be adapted to oxidation. According to our hypothesis, some of the structural elements present in proteins are capable of scavenging ROS to protect other protein structures against ROS toxicity. Various antioxidant elements (distinct subdomains, domains, regions, and polypeptide chains) may act as ROS interceptors, thus mitigating the ROS action on functionally crucial amino acid residues of proteins. In the review, the oxidative modifications of certain plasma proteins, such as α2-macroglobulin, serum human albumin, fibrinogen, and fibrin-stabilising factor, which differ drastically in their spatial structures and functions, are analysed. The arguments that demonstrate the possibility of existing hypothetical antioxidant structures are presented. For the first time, the emphasis is being placed on the programmed mechanism of protein oxidation.


Asunto(s)
Antioxidantes/metabolismo , Fibrinógeno/metabolismo , Proteínas/metabolismo , Humanos , Oxidación-Reducción
9.
Free Radic Biol Med ; 95: 55-64, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26969792

RESUMEN

Fibrinogen is extremely susceptible to attack by reactive oxygen species (ROS). Having been suffered an oxidative modification, the fibrinogen molecules, now with altered spatial structure and function of fibrin network, affect hemostasis differently. However, the potential effects of the oxidative stress on the early stages of the fibrin self-assembly process remain unexplored. To clarify the damaging influence of ROS on the knob 'A': hole 'a' and the D:D interactions, the both are operating on the early stages of the fibrin polymerization, we have used a novel approach based on exploration of FXIIIa-mediated self-assembly of the cross-linked fibrin oligomers dissolved in the moderately concentrated urea solutions. The oligomers were composed of monomeric desA fibrin molecules created by cleaving the fibrinopeptides A off the fibrinogen molecules with a thrombin-like enzyme, reptilase. According to the UV-absorbance and fluorescence measurements data, the employed low ozone/fibrinogen ratios have induced only a slight fibrinogen oxidative modification that was accompanied by modest chemical transformations of the aromatic amino acid residues of the protein. Else, a slight consumption of the accessible tyrosine residues has been observed due to intermolecular dityrosine cross-links formation. The set of experimental data gathered with the aid of electrophoresis, elastic light scattering and analytical centrifugation has clearly witnessed that the oxidation can serve as an effective promoter for the observed enhanced self-assembly of the covalently cross-linked oligomers. At urea concentration of 1.20M, the pristine and oxidized fibrin oligomers were found to comprise a heterogeneous set of the double-stranded protofibrils that are cross-linked only by γ-γ dimers and the fibers consisting on average of four strands that are additionally linked by α polymers. The amounts of the oxidized protofibrils and the fibers accumulated in the system were higher than those of the non-oxidized counterparts. Moreover, the γ and α polypeptide chains of the oxidized molecules were more readily crosslinked by the FXIIIa. Upon increasing the urea solution concentration to 4.20M, the cross-linked double-stranded desA fibrin protofibrils have dissociated into the single-stranded fibrin oligomers, whereas the fibers dissociated into both the double-stranded desA fibrin oligomers, the structural integrity of the latter being maintained by means of the intermolecular α polymers, and the single-stranded fibrin oligomers cross-linked only by γ-γ dimers. The data we have obtained in this study indicate that the FXIIIa-mediated process of assembling the cross-linked protofibrils and the fibers constructed from the oxidized monomeric fibrin molecules was facilitated due to the strengthening of D:D interactions. The findings infer that the enhanced longitudinal D:D interactions become more essential in the assembly of soluble protofibrils when the interactions knobs 'A': holes 'a' are injured by oxidation. The new experimental findings presented here could be of help for elucidating the essential adaptive molecular mechanisms capable of mitigating the detrimental action of ROS in the oxidatively damaged fibrin self-assemblage processes.


Asunto(s)
Fibrina/química , Fibrinógeno/química , Hemostasis , Especies Reactivas de Oxígeno/metabolismo , Factor XIII/química , Factor XIII/metabolismo , Fibrina/metabolismo , Productos de Degradación de Fibrina-Fibrinógeno/química , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Fibrinógeno/metabolismo , Humanos , Oxidación-Reducción , Polímeros/química , Unión Proteica , Multimerización de Proteína , Trombina/química , Trombina/metabolismo , Urea/farmacología
10.
Biochem Biophys Res Commun ; 461(2): 408-12, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25896761

RESUMEN

FXIIIa-mediated isopeptide γ-γ bonds are produced between γ polypeptide chains of adjacent monomeric fibrin. Despite the use of the different methodological approaches there are apparently conflicting ideas regarding the orientation of γ-γ bonds. To identify the orientation of these bonds a novel approach has been applied. It was based on self-assembly of soluble cross-linked fibrin protofibrils ongoing in the urea solution of moderate concentrations followed by dissociation of protofibrils in the conditions of increasing urea concentration. The oligomers were composed of monomeric desA fibrin molecules created by cleavage of the fibrinopeptides A from fibrinogen molecules with thrombin-like enzyme, reptilase. The results of elastic and dynamic light scattering coupled with analytical ultracentrifugation indicated an emergence of the double-stranded rod-like fibrin protofibrils. For the first time, the protofibrils are proved to exhibit an ability to dissociate under increasing urea concentration to yield single-stranded structures. Since no accumulation of α polymers has been found the covalent structure of soluble single-stranded fibrin oligomers is entirely brought about by γ-γ bonds. The results of this study provide an extra evidence to support the model of the longitudinal γ-γ bonds that form between the γ chains end-to-end within the same strand of a protofibril.


Asunto(s)
Factor XIIIa/metabolismo , Productos de Degradación de Fibrina-Fibrinógeno/química , Fibrina/química , Fibrina/metabolismo , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Humanos , Hidrodinámica , Luz , Multimerización de Proteína , Dispersión de Radiación , Solubilidad , Ultracentrifugación , Urea/química
11.
Curr Pharm Biotechnol ; 16(2): 112-20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25594288

RESUMEN

This review highlights and discusses the impact of nanotechnology on the inhibition of microbial colonization and biofilm development on modified surface prosthetic devices. In the first part of the paper the current status of infections related to prosthetic devices and the inquiries resulting from the increased number of patients with these infections are briefly reviewed. Next we discuss several aspects about the implication of nanotechnology in prosthetic devices surface modification and its impact on the prevention of infections. The main aspects regarding the biocompatibility and the application of these nanomodified prosthetic devices in tissue engineering are also highlighted.


Asunto(s)
Nanoestructuras , Prótesis e Implantes , Animales , Infecciones Bacterianas/prevención & control , Materiales Biocompatibles , Biopelículas/crecimiento & desarrollo , Humanos , Micosis/prevención & control , Nanotecnología , Propiedades de Superficie
12.
Free Radic Biol Med ; 77: 106-20, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25224034

RESUMEN

Native fibrinogen is a key blood plasma protein whose main function is to maintain hemostasis by virtue of producing cross-linked fibrin clots under the influence of thrombin and fibrin-stabilizing factor (FXIIIa). The aim of this study was to investigate mechanisms of impairment of both the molecular structure and the spatial organization of fibrinogen under ozone-induced oxidation. FTIR analysis showed that ozone treatment of the whole fibrinogen molecule results in the growth of hydroxyl, carbonyl, and carboxyl group content. A similar analysis of fibrinogen D and E fragments isolated from the oxidized protein also revealed transformation of distinct important functional groups. In particular, a remarkable decay of N-H groups within the peptide backbone was observed along with a lowering of the content of C-H groups belonging to either the aromatic moieties or the aliphatic chain CH2 and CH3 units. The model experiments performed showed that the rather unexpected decay of the aliphatic CH units might be caused by the action of hydroxyl radicals, these being produced in the water solution from ozone. The observed dissimilarities in the shapes of amide I bands of the fibrinogen D and E fragments before and after ozone treatment are interpreted in terms of feasible local conformational changes affecting the secondary structure of the protein. Taken as a whole, the FTIR data suggests that the terminal D fragments of fibrinogen are markedly more susceptible to the ozone-induced oxidation than the central E fragment. The data on elastic and dynamic light scattering provide evidence that, in the presence of FXIIIa, both the unoxidized and the oxidized fibrinogen molecules bind to one another in an "end-to-end" fashion to form the flexible covalently cross-linked fibrinogen homopolymers. The γ and α polypeptide chains of the oxidized fibrinogen proved to be involved in the enzymatic cross-linking more readily than those of unaffected fibrinogen. The experimental data on fibrinogen oxidation acquired in the present study, combined with our earlier findings, make it reasonable to suppose that the spatial structure of fibrinogen could be evolutionarily adapted to some reactive oxygen species actions detrimental to the protein function.


Asunto(s)
Fibrinógeno/química , Ozono/química , Humanos , Cinética , Oxidación-Reducción , Ácidos Ftálicos/química , Multimerización de Proteína , Estructura Terciaria de Proteína , Especies Reactivas de Oxígeno/química , Espectroscopía Infrarroja por Transformada de Fourier
13.
Biochim Biophys Acta ; 1834(12): 2470-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23948453

RESUMEN

The plasma fibrin-stabilizing factor (pFXIII) function is to maintain a hemostasis by the fibrin clot stabilization. The conversion of pFXIII to the active form of the enzyme (FXIIIа) is a multistage process. Ozone-induced oxidation of pFXIII has been investigated at different stages of its enzyme activation. The biochemical results point to a decrease of an enzymatic activity of FXIIIа depending largely on the stage of the pFXIII conversion into FXIIIа at which oxidation was carried out. UV-, FTIR- and Raman spectroscopy demonstrated that chemical transformation of cyclic, NH, SH and S-S groups mainly determines the oxidation of amino acid residues of pFXIII polypeptide chains. Conversion of pFXIII to FXIIIa proved to increase protein sensitivity to oxidation in the order: pFXIII

Asunto(s)
Factor XIIIa/química , Depuradores de Radicales Libres/química , Oxidantes Fotoquímicos/química , Ozono/química , Factor XIIIa/metabolismo , Depuradores de Radicales Libres/metabolismo , Radicales Libres/química , Radicales Libres/metabolismo , Humanos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA