Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Fish Dis ; : e14011, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252455

RESUMEN

Giant freshwater prawn (Macrobrachium rosenbergii (MR)) is a significant aquafarm species commercially cultured in Taiwan. Intensive farming practices have led to the outbreak of Lactococcus garvieae (LG), which causes Lactococcosis in MR. Recently, LG has re-emerged and the number of mortalities in prawn farms has increased in Taiwan. However, there is no preventative strategy described and a lack of knowledge on virulence factors and pathogenesis from LG in MR. The most virulent strain of L. garvieae from M. rosenbergii was screened in vivo among seven isolates selected for infectivity testing injecting 0.1 mL of 108 CFU/mL bacterial concentration. Among the seven isolates screened, L. garvieae 109-6 resulted in 100% mortality within 3 days post-infection. Furthermore, 109-6 L. garvieae LD50 dosage from in MR was found to be 106 CFU/mL. Subsequently, the most virulent strain 109-6 was sequenced using MinIon Nanopore sequencing. Results indicated that the LG genome yielded a protein-coding of 3857 with 59 tRNA and 16 rRNA and no plasmid. Interestingly, the distribution of subsystems in the annotated genome revealed genes related to virulence, defence, and disease among LG 50 genes. Altogether, the virulent strain and its genome data revealed distinctive features of LG, which hinted toward its pathogenicity and could facilitate for better preventive strategies.

2.
Vet Res Commun ; 48(1): 85-101, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37530963

RESUMEN

The cost of the purification process hinders the extensive use of cytosine phosphate guanosine-oligodeoxynucleotides (CpG-ODNs) for shrimp culture. Therefore, this study used a shuttle vector plasmid to carry 60 copies of CpG-ODN 1668 (pAD43-25_60CpG), which can replicate in Escherichia coli and Bacillus subtilis strain RIK1285. The first experiment used a reverse gavage procedure to deliver a substance (PBS [CK], pAD43-25 [P0], and pAD43-25_60CpG [P60], respectively) directly into the anterior midgut of Penaeus vannamei and transcriptome sequence analysis with a reference genome was performed to examine the expression of well-known immune-related genes. The results showed that the expression levels of immune-related genes in P60 group were significantly increased, particularly those associated with AMPs. In addition, using RT‒qPCR, the expression levels of AMP genes (LvALF, LvPEN-2, and LvPEN-3) in the P60 group may vary depending on the tissue and time point. The second experiment used dietary supplementation with three kinds of heat-killed B. subtilis (HKBS, HKBS-P0, and HKBS-P60) in 28 days of feeding experiments. The results showed that dietary supplementation with HKBS-P60 did not significantly improve shrimp growth performance and survival. However, on days 14 and 28 of the feeding regimens, alkaline phosphatase (AKP) and acid phosphatase (ACP) activity were considerably higher than in other treatments. In addition, following infection with Vibrio harveyi, AKP and ACP activity in the HKBS-P60 group was significantly higher than in other treatments, particularly at the early stage of bacterial infection. Moreover, HKBS-P60 was found to be better protected against V. harveyi infection with lower cumulative mortality (60%) compared to HKBS (90%) and HKBS-P0 (100%) at 7 days after infection. Overall, these findings confirmed that P60 could increase immunological responses in the shrimp midgut, and HKBS-P60 could be used as an effective tool to enhance the immune response and disease resistance in shrimp.


Asunto(s)
Bacillus subtilis , Penaeidae , Vibrio , Animales , Bacillus subtilis/genética , Penaeidae/genética , Penaeidae/metabolismo , Calor , Inmunidad Innata , Resistencia a la Enfermedad , Oligodesoxirribonucleótidos/metabolismo , Plásmidos/genética
3.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298593

RESUMEN

The Chinese softshell turtle (CST; Pelodiscus sinensis) is a freshwater aquaculture species of substantial economic importance that is commercially farmed across Asia, particularly in Taiwan. Although diseases caused by the Bacillus cereus group (Bcg) pose a major threat to commercial CST farming systems, information regarding its pathogenicity and genome remains limited. Here, we investigated the pathogenicity of Bcg strains isolated in a previous study and performed whole-genome sequencing. Pathogenicity analysis indicated that QF108-045 isolated from CSTs caused the highest mortality rate, and whole-genome sequencing revealed that it was an independent group distinct from other known Bcg genospecies. The average nucleotide identity compared to other known Bcg genospecies was below 95%, suggesting that QF108-045 belongs to a new genospecies, which we named Bacillus shihchuchen. Furthermore, genes annotation revealed the presence of anthrax toxins, such as edema factor and protective antigen, in QF108-045. Therefore, the biovar anthracis was assigned, and the full name of QF108-045 was Bacillus shihchuchen biovar anthracis. In addition to possessing multiple drug-resistant genes, QF108-045 demonstrated resistance to various types of antibiotics, including penicillins (amoxicillin and ampicillin), cephalosporins (ceftifour, cephalexin, and cephazolin), and polypeptides, such as vancomycin.


Asunto(s)
Bacillus anthracis , Bacillus , Tortugas , Animales , Bacillus/genética , Bacillus anthracis/genética , Bacillus cereus/genética , Genómica , Tortugas/genética , Tortugas/microbiología , Virulencia/genética
4.
J Fish Dis ; 46(4): 287-297, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36571326

RESUMEN

Edwardsiella tarda (ET) and Edwardsiella anguillarum (EA) are the most harmful bacterial fish pathogens in Taiwan. However, there is confusion regarding the genotypic identification of E. tarda and E. piscicida (EP). Therefore, we used a novel Nanopore MinION MK1C platform to sequence and compare the complete genomes of E. piscicida and E. anguillarum. The number of coding genes, rRNA, and tRNA recorded for E. anguillarum and E. piscicida were 8322, 25, and 98, and 5458, 25, and 98, respectively. Ribosomal multilocus sequence typing (rMLST) for E. piscicida indicated 35 rps. The shared clusters between E. anguillarum and E. piscicida indicated several unique clusters for the individual genomes. The phylogenetic tree analysis for all complete genomes indicated that E. anguillarum and E. piscicida were placed into two species-specific genotypes. Distribution of subsystems for annotated genomes found that genes related to virulence, defence, and disease for E. anguillarum were 103 and those for E. piscicida were 60 and pathogenic islands (PI) were 498 and 225, respectively. Vaccine candidates were identified in silico from the core genes using high antigenic, solubility, and secretion probabilities. Altogether, the genome data revealed distinctive features between E. anguillarum and E. piscicida, which suggest different pathogenicity and thus the need for separate preventive strategies.


Asunto(s)
Edwardsiella , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Nanoporos , Animales , Filogenia , Factores de Virulencia/genética , Taiwán , Enfermedades de los Peces/microbiología , Genómica , Infecciones por Enterobacteriaceae/microbiología
5.
J Fish Dis ; 45(11): 1659-1672, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35916068

RESUMEN

Edwardsiella spp. is a gram-negative, facultatively anaerobic, intracellular bacteria threatening the aquaculture industry worldwide. Noticeably, E. tarda is now genotypically classified into three distinct groups (E. tarda, E. piscicida and E. anguillarum), but morphologically, it is unclear due to varying degrees of virulence in different fish hosts. Hence, to reclassify E. tarda, we investigated differences in genotypes, phenotypes and pathogenicity. We collected Edwardsiella isolates from five different counties of Taiwan between 2017 and 2021. At first, gyrB gene was amplified for a phylogenetic tree from 40 isolates from different fish and one reference isolate, BCRC10670, from the human. Thirty-nine strains clustered into E. anguillarum, 1 strain into E. piscicida and 1 strain into E. tarda from human strain. Second, all isolates were characterized using various phenotypic (API 20E biochemical profiles) and genotypic (pulsed-field gel electrophoresis [PFGE], and virulence-related gene detection). SpeI digestion revealed 10 pulsotypes and I-CeuI into 7 pulsotypes. Virulent genes (citC, gadB, katB, mukF and fimA) confirmed in 35, 31, 28, 37 and 38 isolates, respectively. Finally, in vivo challenge test in milkfish (Chanos chanos) indicated the highest mortality from E. anguillarum. Overall, results revealed unique features with Edwardsiella spp. genotypes and pathogenicity, which are relevant to the host and provide useful insights for future vaccine development.


Asunto(s)
Edwardsiella , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Animales , Edwardsiella/genética , Edwardsiella tarda/genética , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/microbiología , Peces/microbiología , Humanos , Fenotipo , Filogenia , Taiwán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA