Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 19(13): 2668-81, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20400459

RESUMEN

Myotubularins are a family of dual-specificity phosphatases that act to modify phosphoinositides and regulate membrane traffic. Mutations in several myotubularins are associated with human disease. Sequence changes in MTM1 and MTMR14 (also known as Jumpy) have been detected in patients with a severe skeletal myopathy called centronuclear myopathy. MTM1 has been characterized in vitro and in several model systems, while the function of MTMR14 and its specific role in muscle development and disease is much less well understood. We have previously reported that knockdown of zebrafish MTM1 results in significantly impaired motor function and severe histopathologic changes in skeletal muscle that are characteristic of human centronuclear myopathy. In the current study, we examine zebrafish MTMR14 using gene dosage manipulation. As with MTM1 knockdown, morpholino-mediated knockdown of MTMR14 results in morphologic abnormalities, a developmental motor phenotype characterized by diminished spontaneous contractions and abnormal escape response, and impaired excitation-contraction coupling. In contrast to MTM1 knockdown, however, muscle ultrastructure is unaffected. Double knockdown of both MTM1 and MTMR14 significantly impairs motor function and alters skeletal muscle ultrastructure. The combined effect of reducing levels of both MTMR14 and MTM1 is significantly more severe than either knockdown alone, an effect which is likely mediated, at least in part, by increased autophagy. In all, our results suggest that MTMR14 is required for motor function and, in combination with MTM1, is required for myocyte homeostasis and normal embryonic development.


Asunto(s)
Acoplamiento Excitación-Contracción , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Autofagia , Modelos Animales de Enfermedad , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Homeostasis , Músculo Esquelético/fisiología , Músculo Esquelético/ultraestructura , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
2.
Hum Mol Genet ; 19(12): 2433-44, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20338942

RESUMEN

Collagen VI is an integral part of the skeletal muscle extracellular matrix, providing mechanical stability and facilitating matrix-dependent cell signaling. Mutations in collagen VI result in either Ullrich congenital muscular dystrophy (UCMD) or Bethlem myopathy (BM), with UCMD being clinically more severe. Recent studies demonstrating increased apoptosis and abnormal mitochondrial function in Col6a1 knockout mice and in human myoblasts have provided the first mechanistic insights into the pathophysiology of these diseases. However, how loss of collagen VI causes mitochondrial dysfunction remains to be understood. Progress is hindered in part by the lack of an adequate animal model for UCMD, as knockout mice have a mild motor phenotype. To further the understanding of these disorders, we have generated zebrafish models of the collagen VI myopathies. Morpholinos designed to exon 9 of col6a1 produced a severe muscle disease reminiscent of UCMD, while ones to exon 13 produced a milder phenotype similar to BM. UCMD-like zebrafish have increased cell death and abnormal mitochondria, which can be attenuated by treatment with the proton pump modifier cyclosporin A (CsA). CsA improved the motor deficits in UCMD-like zebrafish, but failed to reverse the sarcolemmal membrane damage. In all, we have successfully generated the first vertebrate model matching the clinical severity of UCMD and demonstrated that CsA provides phenotypic improvement, thus corroborating data from knockout mice supporting the use of mitochondrial permeability transition pore modifiers as therapeutics in patients, and providing proof of principle for the utility of the zebrafish as a powerful preclinical model.


Asunto(s)
Colágeno Tipo VI/genética , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Pez Cebra/genética , Animales , Apoptosis , Colágeno Tipo VI/metabolismo , Ciclosporina/farmacología , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Exones/genética , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/patología , Actividad Motora/efectos de los fármacos , Músculo Esquelético/anomalías , Músculo Esquelético/ultraestructura , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Sarcolema/efectos de los fármacos , Sarcolema/metabolismo , Sarcolema/patología , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA