RESUMEN
In this work, we revisit the dynamics of carbon monoxide molecular chemisorption on Cu(110) by using quasi-classical trajectory calculations. The molecule-surface interaction is described through an atomistic neural network approach based on Density Functional Theory calculations using a nonlocal exchange-correlation (XC) functional that includes the effect of long-range dispersion forces: vdW-DF2 [Lee et al. Phys. Rev. B, 82, 081101 (2010)]. With this approach, we significantly improve the agreement with experiments with respect to a similar previous study based on a semi-local XC functional. In particular, we obtain excellent agreement with molecular beam experimental data concerning the dependence of the initial sticking probability on surface temperature and impact energy at normal incidence. For off-normal incidence, our results also reproduce two trends observed experimentally: (i) the preferential sticking for molecules impinging parallel to the [1Ì10] direction compared to [001] and (ii) the change from positive to negative scaling as the impact energy increases. Nevertheless, understanding the origin of some remaining quantitative discrepancies with experiments requires further investigations.
RESUMEN
Quasiclassical trajectory calculations and vibrational-state-selected beam-surface measurements of CH4 chemisorption on Ir(111) reveal a nonthermal, hot-molecule mechanism for C-H bond activation. Low-energy vibrationally excited molecules become trapped in the physisorption well and react before vibrational and translational energies accommodate the surface. The reaction probability is strongly surface-temperature-dependent and arises from the pivotal role of Ir atom thermal motion. In reactive trajectories, the mean outward Ir atom displacement largely exceeds that of the transition-state geometry obtained through a full geometry optimization. The study also highlights a new way for (temporary) surface defects to impact high-temperature heterogeneous catalytic reactivity. Instead of reactants diffusing to and competing for geometrically localized lower barrier sites, transient, thermally activated surface atom displacements deliver low-barrier surface reaction geometries to the physisorbed reactants.