Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 97: 59-66, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23921220

RESUMEN

Biochar is discussed as an option for climate change mitigation via C sequestration and may promote sustainable resource efficiency. Large-scale field trials and commercial business with char materials have already started. Therefore char materials have to be assessed for toxic compounds. We tested genotoxic effects of different hydrochars and biochars with the Tradescantia micronucleus test. For this purpose chromosomal aberrations in pollen cells of Tradescantia in the form of micronuclei were evaluated microscopically after defined exposition to extracts from char materials. Hydrochars from hydrothermal carbonization mostly exhibited significantly negative results. Additional germination experiments with hydrochar showed total germination inhibition at additions above five percent v/v in comparison to biochar. However, biological post-treatment of previously toxic hydrochar was successful and toxic effects were eliminated completely. Some post-treated hydrochars even showed growth stimulating effects. Our results clearly demonstrate the necessity of risk assessment with bioindicators. The chosen tests procedures can contribute to biochar and hydrochar characterization for safe application.


Asunto(s)
Carbón Orgánico/toxicidad , Tradescantia/efectos de los fármacos , Carbón Orgánico/química , Germinación/efectos de los fármacos , Concentración de Iones de Hidrógeno , Pruebas de Mutagenicidad , Medición de Riesgo
2.
J Environ Qual ; 41(4): 1023-32, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22751044

RESUMEN

Biochar derived from pyrolysis has received much attention recently as a soil additive to sequester carbon and increase soil fertility. Hydrochar, a brown, coal-like substance produced via hydrothermal carbonization, has also been suggested as a beneficial soil additive. However, before soil application, both types of char need to be tested for potential toxic effects. The aim of this study was to develop simple, inexpensive, and easy-to-apply test procedures to identify negative effects of chars but not to provide false-negative results. The following tests, based partly on ISO norm biotoxicity test procedures, were chosen: (i) cress germination test for gaseous phytotoxic emissions; (ii) barley germination and growth test; (iii) salad germination test; and (iv) earthworm avoidance test for toxic substances. Test reproducibility was ensured by carrying out each test procedure three times with the same biochar. Several modifications were necessary to adapt the tests for biochars/hydrochars. The tested biochar did not induce negative effects in any of the tests. In contrast, the beet-root chip hydrochar showed negative effects in all tests. In an extension to the regular procedure, a regrowth of the harvested barley shoots without further nutrient additions yielded positive results for the hydrochar, which initially had negative effects. This implies that the harmful substance(s) must have been degraded or they were water soluble and leached. Tests with a biochar and hydrochar showed that the proposed modified quick-check test procedures provide a fast assessment of risks and effects of char application to soils within a short period of time (<2 wk).


Asunto(s)
Bioensayo/métodos , Carbono/química , Suelo/química , Animales , Conducta Animal , Germinación/fisiología , Hordeum/fisiología , Lepidium sativum/fisiología , Oligoquetos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA