Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mSphere ; 5(4)2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848007

RESUMEN

Cholera remains a formidable disease, and reports of multidrug-resistant strains of the causative agent Vibrio cholerae have become common during the last 3 decades. The pervasiveness of resistance determinants has largely been ascribed to mobile genetic elements, including SXT/R391 integrative conjugative elements, IncC plasmids, and genomic islands (GIs). Conjugative transfer of IncC plasmids is activated by the master activator AcaCD whose regulatory network extends to chromosomally integrated GIs. MGIVchHai6 is a multidrug resistance GI integrated at the 3' end of trmE (mnmE or thdF) in chromosome 1 of non-O1/non-O139 V. cholerae clinical isolates from the 2010 Haitian cholera outbreak. In the presence of an IncC plasmid expressing AcaCD, MGIVchHai6 excises from the chromosome and transfers at high frequency. Herein, the mechanism of mobilization of MGIVchHai6 GIs by IncC plasmids was dissected. Our results show that AcaCD drives expression of GI-borne genes, including xis and mobIM , involved in excision and mobilization. A 49-bp fragment upstream of mobIM was found to serve as the minimal origin of transfer (oriT) of MGIVchHai6. The direction of transfer initiated at oriT was determined using IncC plasmid-driven mobilization of chromosomal markers via MGIVchHai6. In addition, IncC plasmid-encoded factors, including the relaxase TraI, were found to be required for GI transfer. Finally, in silico exploration of Gammaproteobacteria genomes identified 47 novel related and potentially AcaCD-responsive GIs in 13 different genera. Despite sharing conserved features, these GIs integrate at trmE, yicC, or dusA and carry a diverse cargo of genes involved in phage resistance.IMPORTANCE The increasing association of the etiological agent of cholera, Vibrio cholerae serogroup O1 and O139, with multiple antibiotic resistance threatens to deprive health practitioners of this effective tool. Drug resistance in cholera results mainly from acquisition of mobile genetic elements. Genomic islands conferring multidrug resistance and mobilizable by IncC conjugative plasmids were reported to circulate in non-O1/non-O139 V. cholerae clinical strains isolated from the 2010 Haitian cholera outbreak. As these genomic islands can be transmitted to pandemic V. cholerae serogroups, their mechanism of transmission needed to be investigated. Our research revealed plasmid- and genomic island-encoded factors required for the resistance island excision, mobilization, and integration, as well as regulation of these functions. The discovery of related genomic islands carrying diverse phage resistance genes but lacking antibiotic resistance-conferring genes in a wide range of marine dwelling bacteria suggests that these elements are ancient and recently acquired drug resistance genes.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Islas Genómicas , Plásmidos/genética , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/genética , Antibacterianos/farmacología , Cólera/microbiología , Simulación por Computador , Conjugación Genética , Gammaproteobacteria/genética , Transferencia de Gen Horizontal , Genoma Bacteriano , Haití , Humanos
2.
mBio ; 7(4)2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27435459

RESUMEN

UNLABELLED: Mobile genetic elements play a pivotal role in the adaptation of bacterial populations, allowing them to rapidly cope with hostile conditions, including the presence of antimicrobial compounds. IncA/C conjugative plasmids (ACPs) are efficient vehicles for dissemination of multidrug resistance genes in a broad range of pathogenic species of Enterobacteriaceae ACPs have sporadically been reported in Vibrio cholerae, the infectious agent of the diarrheal disease cholera. The regulatory network that controls ACP mobility ultimately depends on the transcriptional activation of multiple ACP-borne operons by the master activator AcaCD. Beyond ACP conjugation, AcaCD has also recently been shown to activate the expression of genes located in the Salmonella genomic island 1 (SGI1). Here, we describe MGIVchHai6, a novel and unrelated mobilizable genomic island (MGI) integrated into the 3' end of trmE in chromosome I of V. cholerae HC-36A1, a non-O1/non-O139 multidrug-resistant clinical isolate recovered from Haiti in 2010. MGIVchHai6 contains a mercury resistance transposon and an integron In104-like multidrug resistance element similar to the one of SGI1. We show that MGIVchHai6 excises from the chromosome in an AcaCD-dependent manner and is mobilized by ACPs. Acquisition of MGIVchHai6 confers resistance to ß-lactams, sulfamethoxazole, tetracycline, chloramphenicol, trimethoprim, and streptomycin/spectinomycin. In silico analyses revealed that MGIVchHai6-like elements are carried by several environmental and clinical V. cholerae strains recovered from the Indian subcontinent, as well as from North and South America, including all non-O1/non-O139 clinical isolates from Haiti. IMPORTANCE: Vibrio cholerae, the causative agent of cholera, remains a global public health threat. Seventh-pandemic V. cholerae acquired multidrug resistance genes primarily through circulation of SXT/R391 integrative and conjugative elements. IncA/C conjugative plasmids have sporadically been reported to mediate antimicrobial resistance in environmental and clinical V. cholerae isolates. Our results showed that while IncA/C plasmids are rare in V. cholerae populations, they play an important yet insidious role by specifically propagating a new family of genomic islands conferring resistance to multiple antibiotics. These results suggest that nonepidemic V. cholerae non-O1/non-O139 strains bearing these genomic islands constitute a reservoir of transmissible resistance genes that can be propagated by IncA/C plasmids to V. cholerae populations in epidemic geographical areas as well to pathogenic species of Enterobacteriaceae We recommend future epidemiological surveys take into account the circulation of these genomic islands.


Asunto(s)
Conjugación Genética , Farmacorresistencia Bacteriana Múltiple , Transferencia de Gen Horizontal , Islas Genómicas , Plásmidos , Vibrio cholerae no O1/efectos de los fármacos , Vibrio cholerae no O1/genética , Antibacterianos/farmacología , Cólera/microbiología , Elementos Transponibles de ADN , Haití , Humanos , Integrones , Vibrio cholerae no O1/aislamiento & purificación
4.
Appl Environ Microbiol ; 72(4): 3054-7, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16598018

RESUMEN

SXT-related integrating conjugative elements (ICEs) became prevalent in Asian Vibrio cholerae populations after V. cholerae O139 emerged. Here, we describe an SXT-related ICE, ICEVchMex1, in a Mexican environmental V. cholerae isolate. Identification of ICEVchMex1 represents the first description of an SXT-related ICE in the Western Hemisphere. The significant differences between the SXT and ICEVchMex1 genomes suggest that these ICEs have evolved independently.


Asunto(s)
Conjugación Genética , Elementos Transponibles de ADN/genética , Farmacorresistencia Bacteriana Múltiple/genética , Integrones/genética , Vibrio cholerae/aislamiento & purificación , Microbiología Ambiental , México , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Vibrio cholerae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA