RESUMEN
In most of the world Toxoplasma gondii is comprised of archetypal types (types I, II and III); however, South America displays several non-archetypal strains. This study used an experimental mouse model to characterize the immune response and parasite kinetics following infection with different parasite genotypes. An oral inoculation of 50 oocysts per mouse from T. gondii M4 type II (archetypal, avirulent), BrI or BrIII (non-archetypal, virulent and intermediate virulent, respectively) for groups (G)2, G3 and G4, respectively was used. The levels of mRNA expression of cytokines, immune compounds, cell surface markers and receptor adapters [interferon gamma (IFNγ), interleukin (IL)-12, CD8, CD4, CD25, CXCR3 and MyD88] were quantified by SYBR green reverse transcription-quantitative polymerase chain reaction. Lesions were characterized by histology and detection by immunohistochemistry established distribution of parasites. Infection in G2 mice was mild and characterized by an early MyD88-dependent pathway. In G3, there were high levels of expression of pro-inflammatory cytokines IFNγ and IL-12 in the mice showing severe clinical symptoms at 811 days post infection (dpi), combined with the upregulation of CD25, abundant tachyzoites and tissue lesions in livers, lungs and intestines. Significant longer expression of IFNγ and IL-12 genes, with other Th1-balanced immune responses, such as increased levels of CXCR3 and MyD88 in G4, resulted in survival of mice and chronic toxoplasmosis, with the occurrence of tissue cysts in brain and lungs, at 14 and 21 dpi. Different immune responses and kinetics of gene expression appear to be elicited by the different strains and non-archetypal parasites demonstrated higher virulence.
Asunto(s)
Toxoplasma/fisiología , Toxoplasmosis Animal/parasitología , Animales , Antígenos CD/metabolismo , Gatos , Citocinas/metabolismo , ADN Complementario/biosíntesis , ADN Protozoario/aislamiento & purificación , Femenino , Genotipo , Inmunohistoquímica , Ganglios Linfáticos/parasitología , Ganglios Linfáticos/patología , Mesenterio , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , ARN Protozoario/genética , ARN Protozoario/aislamiento & purificación , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores CXCR3/metabolismo , Bazo/parasitología , Bazo/patología , Toxoplasma/clasificación , Toxoplasma/genética , Toxoplasma/inmunología , Toxoplasmosis Animal/inmunología , Toxoplasmosis Animal/patologíaRESUMEN
BACKGROUND: Toxoplasma gondii is a zoonotic parasite of global importance. The outcome of infection in humans can depend on a number of factors including the infecting stage of the parasite, inoculating dose and virulence of the infecting strain. Molecular epidemiological studies have demonstrated an abundance of atypical strains of T. gondii in South America, many of which have been associated with more severe sequelae of infection. The aim of this study was to compare the virulence of T. gondii strains isolated in the Caribbean to a virulent Brazilian strain and an avirulent European strain. METHODS: One hundred and twenty Swiss CD-1 mice were split into 8 groups of 15 mice and each group was inoculated with 200 tachyzoites of one of 8 isolates, comprising ToxoDB genotypes #1, #141, #265, #13, #3 and #6. Five mice per group were euthanized at day 8 post-inoculation (p.i.) and parasite burden was determined in heart, lungs and eyes using quantitative PCR. Lungs and brain were also examined by histopathology and immunohistochemistry. The remaining 10 mice per group were part of a survival experiment to assess virulence. DNA was extracted from tachyzoites of each of the 8 T. gondii isolates and genotyped at four ROP gene loci, including ROP5, ROP16, ROP17 and ROP18 to look for association with markers of virulence. RESULTS: Infection with ToxoDB genotype #13 from the Caribbean resulted in 100% of mice being euthanized which was comparative to infection with the virulent Brazilian strain (ToxoDB genotype #6). Significantly higher parasite burdens were recorded in the lungs and eyes of mice infected with ToxoDB genotypes #13 and #6. Genotyping of ROP loci revealed that the virulent Caribbean isolates had a different ROP18/ROP5 allelic profile (3/1) to the virulent Brazilian isolate (1/3); however, the avirulent Caribbean isolate (ToxoDB genotype #1) had the same ROP18/ROP5 profile as the avirulent European isolate (ToxoDB #3) (both 2/2). Caribbean isolates of intermediate virulence (ToxoDB #141 and #265) all had the same ROP18/ROP5 allelic profile (2/2). CONCLUSIONS: Isolates from the Caribbean with ToxoDB genotype #13 were acutely virulent for mice and comparable to a known virulent Brazilian isolate. The ROP protein allelic profile of the virulent Caribbean and Brazilian isolates differed indicating that perhaps other factors are involved in predicting virulence. Understanding virulence is important for predicting disease outcome in humans and may also aid vaccine design as well as drug discovery.
Asunto(s)
Proteínas Protozoarias/genética , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología , Alelos , Animales , Brasil , Región del Caribe , Europa (Continente) , Femenino , Genotipo , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/genética , Toxoplasma/genética , VirulenciaRESUMEN
BACKGROUND: Toxoplasma gondii is a ubiquitous protozoan parasite capable of infecting all warm-blooded animals including livestock. In these animals, the parasite forms cysts in the tissues which may pose a risk to public health if infected meat is consumed undercooked or raw. The aim of this study was to determine the exposure of livestock to T. gondii in St. Kitts and Nevis. METHODS: Sera and/or heart tissue and meat juice were collected from pigs (n = 124), sheep (n = 116) and goats (n = 66) at the St. Kitts Abattoir. Sera and meat juice were screened for reactive antibodies to T. gondii using an in-house ELISA. Heart tissue was screened for T. gondii DNA using quantitative PCR and positive samples were genotyped using RFLP. RESULTS: Antibodies to T. gondii were detected in sera from 48% of pigs, 26% of sheep and 34% of goats tested. Antibodies were also detected in the meat juice from 55% of pig hearts, 22% of sheep hearts and 31% of goat hearts tested. There was a significant positive correlation between serology and meat juice results. T. gondii DNA was detected in heart tissue of 21% of pigs, 16% of sheep and 23% of goats tested. Preliminary PCR-RFLP analysis identified a predominance of the Type III genotype of T. gondii. CONCLUSIONS: These results suggest widespread environmental contamination with T. gondii oocysts and that livestock could be a potentially important source of T. gondii infection if their infected meat is consumed (or handled) undercooked.