Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 16(3): 3756-3767, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35188367

RESUMEN

Molybdenum trioxide (MoO3), an important transition metal oxide (TMO), has been extensively investigated over the past few decades due to its potential in existing and emerging technologies, including catalysis, energy and data storage, electrochromic devices, and sensors. Recently, the growing interest in two-dimensional (2D) materials, often rich in interesting properties and functionalities compared to their bulk counterparts, has led to the investigation of 2D MoO3. However, the realization of large-area true 2D (single to few atom layers thick) MoO3 is yet to be achieved. Here, we demonstrate a facile route to obtain wafer-scale monolayer amorphous MoO3 using 2D MoS2 as a starting material, followed by UV-ozone oxidation at a substrate temperature as low as 120 °C. This simple yet effective process yields smooth, continuous, uniform, and stable monolayer oxide with wafer-scale homogeneity, as confirmed by several characterization techniques, including atomic force microscopy, numerous spectroscopy methods, and scanning transmission electron microscopy. Furthermore, using the subnanometer MoO3 as the active layer sandwiched between two metal electrodes, we demonstrate the thinnest oxide-based nonvolatile resistive switching memory with a low voltage operation and a high ON/OFF ratio. These results (potentially extendable to other TMOs) will enable further exploration of subnanometer stoichiometric MoO3, extending the frontiers of ultrathin flexible oxide materials and devices.

2.
ACS Appl Mater Interfaces ; 13(4): 5529-5538, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33476138

RESUMEN

The democratization of thermoplastic 3D printing is rooted in the ease of processing enabled by economical melting and shaping. Thermosetting polymers, on the other hand, have not enjoyed this advantage given that thermosetting resins cannot hold their shape without cross-linking or excessive fillers, and once cross-linked, they cannot be extruded for printing. Due to this formidable challenge, thus far, 3D printing of thermosetting polymers has been limited to the photopolymerization of specialized photosensitive resins or extrusion of resins loaded with large fractions (as high as 20 wt %) of rheology modifiers. Here, we report a rheology-modifier- and photoinitiator-free process for the 3D printing of a pure commercial epoxy polymer, without any resin modification and using a conventional 3D printer. A low-cost non-Newtonian support material that switches between solid-fluid states under a nozzle shear stress enables the printing of complex 3D structures and the subsequent and ″one-step″ curing. Our results show that the one-step curing eliminates the often-compromised interlayer adhesion common in layer-by-layer 3D printing processes and results in unprecedented isotropic mechanical properties (strength, elastic modulus, tensile toughness, and strain to failure). This in-bath print and cure (IBPC) 3D printing process for thermosetting polymers is low-cost, scalable, high-speed (nozzle speeds exceeding 720 cm/min), and high-resolution (down to 220 µm filament size). We demonstrate potential applications for hobbyists, structural and aerospace components, and fiber-reinforced composites, among others.

4.
ACS Appl Mater Interfaces ; 12(28): 31984-31991, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32551471

RESUMEN

Achieving a viable process for three-dimensional (3D) printing of ceramics is a sought-after goal in a wide range of fields including electronics and sensors for harsh environments, microelectromechanical devices, energy storage materials, and structural materials, among others. Low laser absorption of ceramic powders renders available additive manufacturing (AM) technologies for metals not suitable for ceramics. Polymer solutions that can be converted to ceramics (preceramic polymers) offer a unique opportunity to 3D-print ceramics; however, due to the low viscosity of these polymers, so far, their 3D printing has only been possible by combining them with specialized light-sensitive agents and subsequently cross-linking them layer by layer by rastering an optical beam. The slow rate, lack of scalability to large specimens, and specialized chemistry requirements of this optical process are fundamental limitations. Here, we demonstrate 3D printing of ceramics enabled by dispensing the preceramic polymer at the tip of a moving nozzle into a gel that can reversibly switch between fluid and solid states, and subsequently thermally cross-linking the entire printed part "at-once" while still inside the same gel. The solid gel, which is composed of mineral oil and silica nanoparticles, converts to fluid at the tip of the moving nozzle, allows the polymer solution to be dispensed, and quickly returns to a solid state to maintain the geometry of the printed polymer both during printing and the subsequent high-temperature (160 °C) cross-linking. We retrieve the cross-linked part from the gel and convert it to ceramic by high-temperature pyrolysis. This scalable process opens up new opportunities for low-cost and high-speed production of complex three-dimensional ceramic parts and will be widely used for high temperature and corrosive environment applications, including electronics and sensors, microelectromechanical systems, energy and structural applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA