RESUMEN
Tropical forests on karstic relief (tropical karst forest) are among the most species-rich biomes. These forests play pivotal roles as global climate regulators and for human wellbeing. Their long-term conservation could be central to global climate mitigation and biodiversity conservation. In Mexico, karst landscapes occupy 20% of the total land surface and are distributed mainly in the southeast of the country, along the eastern slope, and in the Yucatan Peninsula. Within each of these areas, the following types of karst occur: coastal karst, plain karst, hill karst, and mountain karst (low, medium, high). Mountain karst cover 2.07% of Mexico's land surface and are covered by tropical rainforests, montane cloud forests, and tropical deciduous forests. These are probably one of the most diverse biomes in Mexico. However, the mountain karst forests of Mexico have received little attention, and very little is known about their diversity. Here, we evaluated the vascular plant species richness within the mountain karst forests of Mexico. We assembled the first, largest, and most comprehensive datasets of Mexican mountain karst forest species, from different public databases (CONABIO, GBIF, IBdata-UNAM), which included a critical review of all data. We compiled a list of the families, genera, and species present within the mountain karst forests of Mexico. Taxa that best characterize these forests were identified based on their spatial correlation with this biome. We explored biodiversity patterns, identifying areas with the highest species richness, endemism centers, and areas of relatively low sampling intensity. We found that within the mountain karst forests of Mexico there are representatives of 11,771 vascular plant species (253 families and 2,254 genera), ca. 50% of the Mexican flora. We identified 372 species endemic to these forests. According to preliminary IUCN red list criteria, 2,477 species are under some category of conservation risk, of which 456 (3.8%) are endangered. Most of the Mexican mountain karst forests have been extensively explored and six allopatric, species-rich areas were identified. Compared to other regions in the world, the mountain karst forests of Mexico are one of the most diverse biomes. They contain more species than some entire montane systems in Mexico such as Sierra Madre Oriental, and Sierra Madre del Sur. Also, the mountain karst forests of Mexico are most diverse than similar forests of South America and Asia, even if considering the effect of different sampling areas. The fact that mountain karst forests are embedded in areas of high biotic diversity, probably contributes to their great floristic diversity. Thus, the mountain karst forests of Mexico are an important source of diversity and shelters a large percentage of the Mexican flora.
Asunto(s)
Bosques , Tracheophyta , Humanos , México , Ecosistema , BiodiversidadRESUMEN
Climatic oscillations during the Pleistocene played a major role in shaping the spatial distribution and demographic dynamics of Earth's biota, including our own species. The Last Interglacial (LIG) or Eemian Period (ca. 130 to 115 thousand years B.P.) was particularly influential because this period of peak warmth led to the retreat of all ice sheets with concomitant changes in global sea level. The impact of these strong environmental changes on the spatial distribution of marine and terrestrial ecosystems was severe as revealed by fossil data and paleogeographic modeling. Here, we report the occurrence of an extant, inland mangrove ecosystem and demonstrate that it is a relict of the LIG. This ecosystem is currently confined to the banks of the freshwater San Pedro Mártir River in the interior of the Mexico-Guatemala El Petén rainforests, 170 km away from the nearest ocean coast but showing the plant composition and physiognomy typical of a coastal lagoon ecosystem. Integrating genomic, geologic, and floristic data with sea level modeling, we present evidence that this inland ecosystem reached its current location during the LIG and has persisted there in isolation ever since the oceans receded during the Wisconsin glaciation. Our study provides a snapshot of the Pleistocene peak warmth and reveals biotic evidence that sea levels substantially influenced landscapes and species ranges in the tropics during this period.
Asunto(s)
Cubierta de Hielo , Rhizophoraceae/crecimiento & desarrollo , Elevación del Nivel del Mar , Humedales , Clima , Cambio Climático , Ambiente , Variación Genética/genética , Guatemala , México , Rhizophoraceae/genéticaRESUMEN
Amphitecna loreae Ortiz-Rodr. & Burelo, sp. nov. (Bignoniaceae), a new species endemic to the karst rainforest in southern Mexico, is described and illustrated. The new species differs from the other species of Amphitecna by the combination of cauliflorous inflorescences, larger flowers, buds rounded at apex, and globose-ellipsoid rather than acuminate fruits. A key to the Mexican species of Amphitecna is presented.