Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 194(Pt B): 115256, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37478785

RESUMEN

Understanding mercury (Hg) species existing after electrokinetic remediation (EK) for marine-sediment remediation is limited. Herein, the Hg fraction removal of EK from contaminated marine sediment was investigated appertaining to bipolar electrode settings along with the effects of electrode spacing and configuration considered. Based on the selective sequential Hg extractions (Hg SSE), much of the Hg in the sediment originated from F5 (i.e., HgS) and F4 (i.e., HgO). The F5 fraction removed by EK was about 30 %, while the F4 fraction had a slight increase of about 34 %. When it comes to electrode configuration, a hexagonal pattern has a higher Hg removal performance than that of a rectangular shape. The addition of anodes increases the remediation surface area, thus allowing superior Hg removal. This study indicates that the electrode spacing significantly affects the mercury removal and the remediation time. Determining suitable spacing enhances the electrical potentials in the migration flux.


Asunto(s)
Restauración y Remediación Ambiental , Mercurio , Contaminantes del Suelo , Sedimentos Geológicos , Electrodos , Contaminantes del Suelo/análisis
2.
J Environ Manage ; 288: 112443, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33827019

RESUMEN

Electrokinetic remediation (EK) is a promising in-situ technique for removing mercury (Hg) from contaminated sites; yet it demands long operational periods when conventional electrodes are used. Herein, we investigate the effectiveness of lab-prepared cathodes (Cu foam coated with reduced graphene oxide (rGO) or manganese oxide (MnO2)) to enhance Hg removal rates from sediment by EK. Although short term (2 h) Hg removal rates were insignificantly different (p-value > 0.05) when using the uncoated and coated Cu foam cathodes, long term (60 h) operations saw greater Hg removal by coated Cu foam cathodes over pure Cu foam, probably owing to the time required for Hg to migrate towards the electrodes from sediment. The highest Hg removal at the cathode was achieved when an αMnO2-coated Cu foam cathode was used with a strong-base anion exchange membrane (AEM) in the system. Using H3PO4, as a cathodic electrolyte resulted in a higher Hg removal efficiency than using NaCl and HCl electrolytes. Electromigration was found to be the dominant Hg-ions (e.g. HHgO2-, Hg2+) transport mechanism in the marine sediment during remediation. Overall, this research demonstrates that employing enhanced electrodes and AEMs can enhance Hg removal by EK processes in relatively shorter operating times than conventional EK processes.


Asunto(s)
Restauración y Remediación Ambiental , Mercurio , Contaminantes del Suelo , Electrodos , Sedimentos Geológicos , Compuestos de Manganeso , Óxidos , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA