Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38672168

RESUMEN

Glaucoma is a significant cause of blindness worldwide, and its treatment remains challenging. The disease progressively leads to damage to the optic disc and thus loss of visual acuity and visual field. High intraocular pressure (IOP) is a common risk factor. There are three major methods to treat this disease: topical, laser, and surgical. None of these are completely satisfactory; therefore, alternatives using new biomaterials are being sought. Since biomaterial engineering has experienced significant growth in recent decades, its products are gradually being introduced to various branches of medicine, with the exception of ophthalmology. Biomaterials, such as glaucoma drainage implants, have been successfully used to treat glaucoma. There is significant ongoing research on biomaterials as drug delivery systems that could overcome the disadvantages of topical glaucoma treatment, such as poor intraocular penetration or frequent drug administration. This article summarizes the use of novel biomaterials for glaucoma treatment presented in the literature. The literature search was based on articles published in English on PubMed.gov, Cochranelibrary.com, and Scopus.com between 2018 and 2023 using the following term "biomaterials in glaucoma." A total of 103 published articles, including twenty-two reviews, were included. Fifty-nine articles were excluded on the basis of their titles and abstracts.

2.
Mater Sci Eng C Mater Biol Appl ; 119: 111637, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321675

RESUMEN

Glaucoma disease therapy frequently involves the application of a glaucoma implant. This approach is effective in terms of reducing the intraocular pressure via the filtering of intraocular fluid from the anterior chamber into the drainage pathways. The basic properties of such implants comprise of long-term stability and the filtering of fluids without the occurrence of undesirable blockages. This study describes the design and production of a novel material for the treatment of glaucoma disease that is based on electrospinning technology. Non-toxic, biocompatible and non-degradable polyvinylidenefluoride (PVDF) was selected as the implant material. The research investigated the resistance of this material to the growth of a fibroblast cell line without the use of antifibrotic agents such as mitomycin C. Three different types of PVDF were electrospun separately and mixed with polyethyleneoxide (PEO), following which the degree of cell growth resistance was evaluated. It was discovered that the fiber layers that contained PVDF blended with PEO evinced a statistically significant difference in metabolic activity compared to the PURE PVDF layers. Only small cell clusters formed on the layers that were resistant to cell fibrotization. As a result of the observed clustering, a new program was developed in MATLAB software for the determination of the number of cells involved in cluster formation, which then allowed for the determination of the spatial dependence between the cells in the form of a point pattern. The study describes a simple technique for the production of composite PVDF+PEO structures suitable for use in the field of glaucoma treatment.


Asunto(s)
Implantes de Drenaje de Glaucoma , Glaucoma , Humor Acuoso , Glaucoma/tratamiento farmacológico , Humanos , Presión Intraocular , Mitomicina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA