Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Allergy ; 79(3): 767-769, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38084776
2.
Immunity ; 56(8): 1743-1760.e9, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37478856

RESUMEN

Invasive fungal infections are associated with high mortality rates, and the lack of efficient treatment options emphasizes an urgency to identify underlying disease mechanisms. We report that disseminated Candida albicans infection is facilitated by interleukin-1 receptor antagonist (IL-1Ra) secreted from macrophages in two temporally and spatially distinct waves. Splenic CD169+ macrophages release IL-1Ra into the bloodstream, impeding early neutrophil recruitment. IL-1Ra secreted by monocyte-derived tissue macrophages further impairs pathogen containment. Therapeutic IL-1Ra neutralization restored the functional competence of neutrophils, corrected maladapted hyper-inflammation, and eradicated the otherwise lethal infection. Conversely, augmentation of macrophage-secreted IL-1Ra by type I interferon severely aggravated disease mortality. Our study uncovers how a fundamental immunoregulatory mechanism mediates the high disease susceptibility to invasive candidiasis. Furthermore, interferon-stimulated IL-1Ra secretion may exacerbate fungal dissemination in human patients with secondary candidemia. Macrophage-secreted IL-1Ra should be considered as an additional biomarker and potential therapeutic target in severe systemic candidiasis.


Asunto(s)
Proteína Antagonista del Receptor de Interleucina 1 , Sepsis , Humanos , Candida albicans , Macrófagos , Receptores de Interleucina-1
3.
Stem Cell Res Ther ; 14(1): 115, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37118832

RESUMEN

BACKGROUND: To evaluate the safety and efficacy of autologous bone marrow mononuclear cell (BMMNC) infusion in the management of neurological sequelae in children with spina bifida (SB). METHODS: BMMNCs were harvested from bilateral anterior iliac crests. Two intrathecal BMMNC administrations were performed with an interval of 6 months. The measurements of outcomes included clinical assessments, cystomanometry and rectomanometry. RESULTS: Eleven children with SB underwent autologous BMMNC infusions from 2016 to 2020. There were no severe adverse events during the study period. The number of patients requiring assistance to expel stools decreased from 11 before cell infusion to 3 after the second cell infusion. The number of patients who had urine leakage decreased from 9 patients at baseline to 3 patients after the second BMMNC infusion. The mean bladder capacity increased from 127.7 ± 59.2 ml at baseline to 136.3 ± 54.8 ml at six months and to 158.3 ± 56.2 ml at 12 months after BMMNC infusions. Detrusor pressure (pdet) decreased from 32.4 ± 22.0 cm H2O at baseline to 21.9 ± 11.8 cm H2O after 12 months of follow-up. At baseline, six patients could walk independently. After the 2nd infusion, eight patients could walk independently. CONCLUSION: Intrathecal infusions of autologous bone marrow mononuclear cells are safe and may improve bowel, bladder, and motor function in children with SB. TRIAL REGISTRATION: NCT, NCT05472428. Registered July 25, 2022- Retrospectively registered, https://www. CLINICALTRIALS: gov/ct2/show/NCT05472428 .


Asunto(s)
Médula Ósea , Disrafia Espinal , Humanos , Niño , Vejiga Urinaria , Trasplante de Médula Ósea , Disrafia Espinal/complicaciones , Disrafia Espinal/terapia
4.
Curr Issues Mol Biol ; 45(1): 233-248, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36661504

RESUMEN

The expression of pluripotency factors, and their associations with clinicopathological parameters and drug response have been described in various cancers, including gastric cancer. This study investigated the association of pluripotency factor expression with the clinicopathological characteristics of gastric cancer patients, as well as changes in the expression of these factors upon the stem cell-enriching spheroid culture of gastric cancer cells, regulation of sphere-forming capacity, and response to cisplatin and TRAIL treatments by Nanog and KLF4. Nanog expression was significantly associated with the emergence of a new tumor and a worse prognosis in gastric cancer patients. The expression of the pluripotency factors varied among six gastric cancer cells. KLF4 and Nanog were expressed high in SNU-601, whereas SOX2 was expressed high in SNU-484. The expression of KLF4 and SOX2 was increased upon the spheroid culture of SNU-601 (KLF4/Nanog-high) and SNU-638 (KLF4/Nanog-low). The spheroid culture of them enhanced TRAIL-induced viability reduction, which was accompanied by the upregulation of death receptors, DR4 and DR5. Knockdown and overexpression of Nanog in SNU-601 and SNU-638, respectively, did not affect spheroid-forming capacity, however, its expression was inversely correlated with DR4/DR5 expression and TRAIL sensitivity. In contrast, KLF4 overexpression in SNU-638 increased spheroid formation, susceptibility to cisplatin and TRAIL treatments, and DR4/DR5 expression, while the opposite was found in KLF4-silenced SNU-601. KLF4 is supposed to play a critical role in DR4/DR5 expression and responses to TRAIL and cisplatin, whereas Nanog is only implicated in the former events only. Direct regulation of death receptor expression and TRAIL response by KLF4 and Nanog have not been well documented previously, and the regulatory mechanism behind the process remains to be elucidated.

5.
Int J Med Sci ; 16(11): 1412-1423, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31673231

RESUMEN

Resistance against tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death of cancer cells is a major obstacle in clinical application of TRAIL. Variable response to TRAIL of gastric cancer cells, synergy of TRAIL with bortezomib and potential mechanisms behind the phenomena were investigated in this study. The response to TRAIL varied among six gastric cancer cell lines, which correlated with the expression of apoptotic TRAIL receptors. Analysis of TCGA gene expression data showed that DR4 expression correlated with DR5 in gastric cancer. Although higher expression of DR4 was significantly associated with lower T, N and TNM stages, neither DR4 nor DR5 expression meaningfully influenced overall survival rate. Combined treatment of TRAIL with bortezomib resulted in strong synergistic response with enhanced activation of caspases-8, -9 and -3, and increased Annexin V-binding cell fractions in TRAIL-resistant SNU-216 cells. Bortezomib increased the expression of p21cip1/waf1, but p21cip1/waf1 silencing did not restore cell viability significantly. Bortezomib also increased DR5 expression and knockdown of DR5 expression significantly recovered cell viability reduced by the combination treatment. Bortezomib decreased phosphorylation of ERK1/2, but increased that of JNK. Treatment with either an ERK1/2 inhibitor U0126 or a JNK inhibitor SP600125 rescued SNU-216 from dying of bortezomib or combined treatment. However, upregulation of DR5 by bortezomib was knocked down only by inhibition of ERK1/2 activation significantly, but not by JNK activity inhibition. In summary, upregulation of DR5 by bortezomib is of critical significance in the synergy of bortezomib with TRAIL in apoptosis of TRAIL-resistant SNU-216 and that activity of ERK1/2 is required in the bortezomib-induced DR5 overexpression.


Asunto(s)
Bortezomib/administración & dosificación , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Neoplasias Gástricas/tratamiento farmacológico , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Anciano , Antracenos/farmacología , Apoptosis/efectos de los fármacos , Butadienos/farmacología , Caspasas/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , MAP Quinasa Quinasa 4/antagonistas & inhibidores , MAP Quinasa Quinasa 4/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Persona de Mediana Edad , Nitrilos/farmacología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Quinasas p21 Activadas/genética
6.
BMC Cell Biol ; 15: 42, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25420887

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have the potential to differentiate into specialized cell lineages such as osteoblasts and adipocytes in vitro. There exists a reciprocal relationship between osteogenic and adipogenic differentiation of MSCs that an osteogenic phenotype occurs at the expense of an adipogenic phenotype and vice versa, which in turn influence one another's phenotype through negative feedback loops. Thus, it is important to understand what signaling molecules modulate the lineage commitment of MSCs. Protein kinase C (PKC) plays a central role in cellular signal transduction for mediating diverse biological functions, and dysregulation of PKC activity is involved in various metabolic diseases including cancer, diabetes, and heart disease. Although the role of individual PKC isoforms has been investigated in various fields, the potential role of PKC in bone metabolism is not completely understood. In this study, we investigated the potential role of PKCδ in osteogenic lineage commitment of human bone marrow-derived mesenchymal stem cells (hBMSCs). RESULTS: We observed that expression and phosphorylation of PKCδ were increased during osteogenic differentiation of hBMSCs. Pharmacological inhibition and genetic ablation of PKCδ in hBMSCs resulted in a significant attenuation of osteogenic differentiation as evidenced by reduced ALP activity and ECM mineralization, as well as down-regulation of the expression of osteoblast-specific genes. These effects were also accompanied by induction of adipogenic differentiation and up-regulation of the expression of adipocyte-specific genes involved in lipid synthesis in osteogenic induction of hBMSCs. Additionally, the activation of AMPK, which is a key cellular energy sensor, induced osteogenesis of hBMSCs. However, the inhibition of AMPK activity by compound C did not affect the activation of PKCδ at all, indicating that there is no direct correlation between AMPK and PKCδ in osteogenesis of hBMSCs. CONCLUSIONS: These results suggest that PKCδ is a critical regulator for the balance between osteogenesis and adipogenesis of hBMSCs and thus has a potential novel therapeutic target for the treatment of metabolic bone diseases.


Asunto(s)
Adipogénesis , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/enzimología , Osteoblastos/citología , Proteína Quinasa C-delta/metabolismo , Adipocitos/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Humanos , Osteoblastos/metabolismo , Osteogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA