Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
PLoS One ; 19(5): e0304821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820495

RESUMEN

OBJECTIVE: The prevalence of type 2 diabetes mellitus (T2DM) in Vietnam has doubled from 3% to 6% over the last decades, with potential consequences for persons with diabetes and their caregivers. This study aimed to assess caregiver burdens and factors associated with caregiver burden. METHOD: A cross-sectional study was conducted in 2019, using data from 1,241 informal caregivers (ICGs). Caregiver burden was scored from 0-32 using 8 questions from the Zarit Burden Interview (ZBI). Quantile regression analysis was used to identify factors associated with caregiver burden. RESULTS: The median score of the ZBI was 7.0 (Q1-Q3: 2.0-10.0), indicating that the burden among caregiver of persons with T2DM is not high. Quantile regression showed that the higher the monthly income, the lower the burden among caregivers (50% quantile and 75% quantile of burden: -0.004). Lower educational level (25%Q: 4.0, 50%Q; 3.0, 75%Q: 2.16), being a farmer (25%Q: 2.0) and providing care to other people besides the person with T2DM (25%Q: 2.0, 50%Q; 2.54, 75%Q: 1.66) were associated with higher burden on caregivers. CONCLUSION: The study found that caregivers facing additional life stressors, such as low income or other caregiving responsibilities, reported higher levels of burden. These findings could inform the development of interventions targeted at supporting informal caregivers in rural areas in low- and middle-income countries.


Asunto(s)
Cuidadores , Diabetes Mellitus Tipo 2 , Población Rural , Humanos , Diabetes Mellitus Tipo 2/psicología , Diabetes Mellitus Tipo 2/epidemiología , Vietnam/epidemiología , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Cuidadores/psicología , Adulto , Anciano , Carga del Cuidador/psicología , Carga del Cuidador/epidemiología
3.
Sci Rep ; 11(1): 9979, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976255

RESUMEN

Extensive studies have highlighted a need for frequently consistent land cover information for interdisciplinary studies. This paper proposes a comprehensive framework for the automatic production of the first Vietnam-wide annual land use/land cover (LULC) data sets (VLUCDs) from 1990 to 2020, using available remotely sensed and inventory data. Classification accuracies ranged from 85.7 ± 1.3 to 92.0 ± 1.2% with the primary dominant LULC and 77.6 ± 1.2% to 84.7 ± 1.1% with the secondary dominant LULC. This confirmed the potential of the proposed framework for systematically long-term monitoring LULC in Vietnam. Results reveal that despite slight recoveries in 2000 and 2010, the net loss of forests (19,940 km2) mainly transformed to croplands over 30 years. Meanwhile, productive croplands were converted to urban areas, which increased approximately ten times. A threefold increase in aquaculture was a major driver of the wetland loss (1914 km2). The spatial-temporal changes varied, but the most dynamic regions were the western north, the southern centre, and the south. These findings can provide evidence-based information on formulating and implementing coherent land management policies. The explicitly spatio-temporal VLUCDs can be benchmarks for global LULC validation, and utilized for a variety of applications in the research of environmental changes towards the Sustainable Development Goals.

4.
PLoS One ; 16(4): e0249849, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33831073

RESUMEN

OBJECTIVES: People with diabetes are at high risk of polypharmacy owing to complex treatment of diabetes and comorbidities. Polypharmacy is associated with increased risk of adverse reactions and decreased compliance. Therefore, the objectives of this study were to assess polypharmacy in people with type 2 diabetes (T2D) and associated diabetes-related factors in rural areas in Vietnam. METHOD: People with T2D (n = 806) who had received treatment for diabetes at a district hospital were invited to participate in a questionnaire-based cross-sectional survey. Polypharmacy was defined as ≥5 types of medicine and assessed as a) prescription medicine and non-prescription/over the counter (OTC) medicine and b) prescription medicine and non-prescription/OTC, herbal and traditional medicine, and dietary supplement. Multiple logistic regression was used to investigate the association between polypharmacy and diabetes specific factors: duration, comorbidities and diabetes-related distress. RESULTS: Of the people with T2D, 7.8% had a medicine use corresponding to polypharmacy (prescription medicine and non-prescription/OTC), and 40.8% when herbal and traditional medicine, and dietary supplement were included. Mean number of medicine intake (all types of medicines and supplements) were 3.8±1.5. The odd ratios (ORs) of polypharmacy (medicine and supplements) increased with diabetes duration (<1-5 years OR = 1.66; 95%CI: 1.09-2.53 and >5 years OR = 1.74; 95%CI: 1.14-2.64 as compared to ≤1-year duration of diabetes), number of comorbidities (1-2 comorbidities: OR = 2.0; 95%CI: 1.18-3.42; ≥3 comorbidities: OR = 2.63;95%CI: 1.50-4.61 as compared to no comorbidities), and suffering from diabetes-related distress (OR = 1.49; 95%CI: 1.11-2.01) as compared to those without distress. CONCLUSIONS: In rural northern Vietnam, persons with longer duration of T2D, higher number of comorbidities and diabetes-related stress have higher odds of having a medicine use corresponding to polypharmacy. A high proportion of people with T2D supplement their prescription, non-prescription/OTC medicine with herbal and traditional medicine and dietary supplements.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polifarmacia , Adulto , Anciano , Suplementos Dietéticos/estadística & datos numéricos , Femenino , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/uso terapéutico , Masculino , Medicina Tradicional/estadística & datos numéricos , Persona de Mediana Edad , Medicamentos bajo Prescripción/administración & dosificación , Medicamentos bajo Prescripción/uso terapéutico , Población Rural/estadística & datos numéricos , Vietnam
5.
Sci Total Environ ; 750: 141565, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882492

RESUMEN

This study is an attempt to quantitatively test and compare novel advanced-machine learning algorithms in terms of their performance in achieving the goal of predicting flood susceptible areas in a low altitudinal range, sub-tropical floodplain environmental setting, like that prevailing in the Middle Ganga Plain (MGP), India. This part of the Ganga floodplain region, which under the influence of undergoing active tectonic regime related subsidence, is the hotbed of annual flood disaster. This makes the region one of the best natural laboratories to test the flood susceptibility models for establishing a universalization of such models in low relief highly flood prone areas. Based on highly sophisticated flood inventory archived for this region, and 12 flood conditioning factors viz. annual rainfall, soil type, stream density, distance from stream, distance from road, Topographic Wetness Index (TWI), altitude, slope aspect, slope, curvature, land use/land cover, and geomorphology, an advanced novel hybrid model Adaptive Neuro Fuzzy Inference System (ANFIS), and three metaheuristic models-based ensembles with ANFIS namely ANFIS-GA (Genetic Algorithm), ANFIS-DE (Differential Evolution), and ANFIS-PSO (Particle Swarm Optimization), have been applied for zonation of the flood susceptible areas. The flood inventory dataset, prepared by collected flood samples, were apportioned into 70:30 classes to prepare training and validation datasets. One independent validation method, the Area-Under Receiver Operating Characteristic (AUROC) Curve, and other 11 cut-off-dependent model evaluation metrices have helped to conclude that the ANIFS-GA has outperformed other three models with highest success rate AUC = 0.922 and prediction rate AUC = 0.924. The accuracy was also found to be highest for ANFIS-GA during training (0.886) & validation (0.883). Better performance of ANIFS-GA than the individual models as well as some ensemble models suggests and warrants further study in this topoclimatic environment using other classes of susceptibility models. This will further help establishing a benchmark model with capability of highest accuracy and sensitivity performance in the similar topographic and climatic setting taking assumption of the quality of input parameters as constant.

6.
J Environ Manage ; 280: 111858, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33360552

RESUMEN

Flash flood is one of the most dangerous hydrologic and natural phenomena and is considered as the top ranking of such events among various natural disasters due to their fast onset characteristics and the proportion of individual fatalities. Mapping the probability of flash flood events remains challenges because of its complexity and rapid onset of precipitation. Thus, this study aims to propose a state-of-the-art data mining approach based on a hybrid equilibrium optimized SysFor, namely, the HE-SysFor model, for spatial prediction of flash floods. A tropical storm region located in the Northwest areas of Vietnam is selected as a case study. For this purpose, 1866 flash-flooded locations and ten indicators were used. The results show that the proposed HE-SysFor model yielded the highest predictive performance (total accuracy = 93.8%, Kappa index = 0.875, F1-score = 0.939, and AUC = 0.975) and produced the better performance than those of the C4.5 decision tree (C4.5), the radial basis function-based support vector machine (SVM-RBF), the logistic regression (LReg), and deep learning neural network (DeepLNN) models in both the training and the testing phases. Among the ten indicators, elevation, slope, and land cover are the most important. It is concluded that the proposed model provides an alternative tool and may help for effectively monitoring flash floods in tropical areas and robust policies for decision making in mitigating the flash flood impacts.


Asunto(s)
Tormentas Ciclónicas , Inundaciones , Minería de Datos , Ríos , Vietnam
7.
Sci Rep ; 10(1): 20494, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33235269

RESUMEN

Land susceptibility to wind erosion hazard in Isfahan province, Iran, was mapped by testing 16 advanced regression-based machine learning methods: Robust linear regression (RLR), Cforest, Non-convex penalized quantile regression (NCPQR), Neural network with feature extraction (NNFE), Monotone multi-layer perception neural network (MMLPNN), Ridge regression (RR), Boosting generalized linear model (BGLM), Negative binomial generalized linear model (NBGLM), Boosting generalized additive model (BGAM), Spline generalized additive model (SGAM), Spike and slab regression (SSR), Stochastic gradient boosting (SGB), support vector machine (SVM), Relevance vector machine (RVM) and the Cubist and Adaptive network-based fuzzy inference system (ANFIS). Thirteen factors controlling wind erosion were mapped, and multicollinearity among these factors was quantified using the tolerance coefficient (TC) and variance inflation factor (VIF). Model performance was assessed by RMSE, MAE, MBE, and a Taylor diagram using both training and validation datasets. The result showed that five models (MMLPNN, SGAM, Cforest, BGAM and SGB) are capable of delivering a high prediction accuracy for land susceptibility to wind erosion hazard. DEM, precipitation, and vegetation (NDVI) are the most critical factors controlling wind erosion in the study area. Overall, regression-based machine learning models are efficient techniques for mapping land susceptibility to wind erosion hazards.

8.
Sci Total Environ ; 741: 140305, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32887018

RESUMEN

This study relates changes in social vulnerability of 20 counties on the northern coasts of the Persian Gulf (PG) and the Gulf of Oman (GO) over a 30-year period (1988-2017) to changing socio-economic conditions and environmental (climate) hazard. Social vulnerability in 2030, 2040 and 2050 is predicted based on the RCP8.5 climate change scenario that projects drought intensities and rising sea levels. Social vulnerability was based on the three dimensions of sensitivity, exposure, and adaptive capacity using 18 socio-economic and five climate indicators identified by experts. All but one indicator related very strongly to the dimension it sought to represent. Despite improvements in adaptive capacity over time, social vulnerability increased between 1988 and 2017 and rates of change accelerated after change point years that occurred between 1998 and 2002 in most counties. Extrapolating past changes of each indicator over time enabled forecasts of social vulnerability in the future. While social variability decreased between 2017 and 2030, it increased again between 2030 and 2050. The lowest future social vulnerability is expected along the eastern PG coast, the greatest along the western PG and the GO. The worsening of socio-economic indicators contributed to increased sensitivity, and increased drought intensities plus the expected rise in sea levels will lead to social vulnerabilities in 2050 comparable to present levels. Between 1.4 and 1.7 M people will live in areas that are likely submerged by water in the future. About 80% of these people live in six counties with variable social vulnerabilities. While counties with lower social variabilities might be better able to cope with the challenges posed by climate change, adaptation programs to enhance the resilience of the residents in these and the remaining counties along the PG and the GO need to be implemented soon to avoid uncontrolled mass migration of millions of people from the region.

9.
Sci Rep ; 10(1): 12937, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737384

RESUMEN

Floods in urban environments often result in loss of life and destruction of property, with many negative socio-economic effects. However, the application of most flood prediction models still remains challenging due to data scarcity. This creates a need to develop novel hybridized models based on historical urban flood events, using, e.g., metaheuristic optimization algorithms and wavelet analysis. The hybridized models examined in this study (Wavelet-SVR-Bat and Wavelet-SVR-GWO), designed as intelligent systems, consist of a support vector regression (SVR), integrated with a combination of wavelet transform and metaheuristic optimization algorithms, including the grey wolf optimizer (GWO), and the bat optimizer (Bat). The efficiency of the novel hybridized and standalone SVR models for spatial modeling of urban flood inundation was evaluated using different cutoff-dependent and cutoff-independent evaluation criteria, including area under the receiver operating characteristic curve (AUC), Accuracy (A), Matthews Correlation Coefficient (MCC), Misclassification Rate (MR), and F-score. The results demonstrated that both hybridized models had very high performance (Wavelet-SVR-GWO: AUC = 0.981, A = 0.92, MCC = 0.86, MR = 0.07; Wavelet-SVR-Bat: AUC = 0.972, A = 0.88, MCC = 0.76, MR = 0.11) compared with the standalone SVR (AUC = 0.917, A = 0.85, MCC = 0.7, MR = 0.15). Therefore, these hybridized models are a promising, cost-effective method for spatial modeling of urban flood susceptibility and for providing in-depth insights to guide flood preparedness and emergency response services.

10.
Sci Total Environ ; 740: 140167, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569915

RESUMEN

Determining the level of ecosystems exposure to multiple environmental hazards or risk factors is of paramount importance for developing, adopting, and planning management strategies to minimize the harmful effects of these hazards. We quantified the level of exposure of mangroves on the northern coasts of the Persian Gulf (PG) and the Gulf of Oman (GO) between 1986 and 2019 to eight environmental hazards, i.e., drought, maximum temperatures, rising sea levels, change of freshwater inflows to coasts, extreme storm surges, significant wave height (SWH), seaward edge retreat in the mangroves, and fishery intensity. Based on expert opinion, fuzzy weights were used to integrate these exposures into a single index (EI) for the region. Experts gave the greatest weight/importance to the risks posed by sea-level rise and seaward retreat of mangroves and the lowest risk to significant wave height and fishery intensity in coastal waters. The overall EI and six of eight individual variables (except fishery intensity and maximum temperatures) pointed to exposure levels of mangroves that increased from the coasts of the PG (EI 0.69) to the GO (EI 6.69). Since these hazards are expected to continue in the future, local/regional management responses should focus on minimizing regional anthropogenic threats and halt conversion of natural areas to agricultural and open areas to maintain freshwater inputs to coastal areas, particularly on the GO. Further, uplands that may serve as future refugia into which mangroves may expand over time as sea levels continue to rise should be protected from development. This was the first study that used an analytic framework to compute a mangrove exposure index to a suite of physical and socio-economic hazards across a region. This framework may provide insights into cost-effective resilience-based design and management of socio-ecologically coupled ecosystems in an era of increasing types and intensities of environmental hazards.

11.
Healthcare (Basel) ; 8(2)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485875

RESUMEN

Corona viruses are a large family of viruses that are not only restricted to causing illness in humans but also affect animals such as camels, cattle, cats, and bats, thus affecting a large group of living species. The outbreak of Corona virus in late December 2019 (also known as COVID-19) raised major concerns when the outbreak started getting tremendous. While the first case was discovered in Wuhan, China, it did not take long for the disease to travel across the globe and infect every continent (except Antarctica), killing thousands of people. Since it has become a global concern, different countries have been working toward the treatment and generation of vaccine, leading to different speculations. While some argue that the vaccine may only be a few weeks away, others believe that it may take some time to create the vaccine. Given the increasing number of deaths, the COVID-19 has caused havoc worldwide and is a matter of serious concern. Thus, there is a need to study how the disease has been propagating across continents by numbers as well as by regions. This study incorporates a detailed description of how the COVID-19 outbreak started in China and managed to spread across the globe rapidly. We take into account the COVID-19 outbreak cases (confirmed, recovered, death) in order to make some observations regarding the pandemic. Given the detailed description of the outbreak, this study would be beneficial to certain industries that may be affected by the outbreak in order to take timely precautionary measures in the future. Further, the study lists some industries that have witnessed the impact of the COVID-19 outbreak on a global scale.

12.
Sci Total Environ ; 737: 139508, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32531509

RESUMEN

Dust particles are transported globally. Dust storms can adversely impact both human health and the environment, but they also impact transportation infrastructure, agriculture, and industry, occasionally severely. The identification of the locations that are the primary sources of dust, especially in arid and semi-arid environments, remains a challenge as these sites are often in remote or data-scarce regions. In this study, a new method using state-of-the-art machine-learning algorithms - random forest (RF), support vector machines (SVM), and multivariate adaptive regression splines (MARS) - was evaluated for its ability to spatially model the distribution of dust-source potential in eastern Iran. To accomplish this, empirically identified dust-source locations were determined with the ozone monitoring instrument aerosol index and the Moderate-Resolution Imaging Spectroradiometer (MODIS) Deep Blue aerosol optical thickness methods. The identified areas were divided into training (70%) and validation (30%) sets. Measurements of the conditioning factors (lithology, wind speed, maximum air temperature, land use, slope angle, soil, rainfall, and land cover) were compiled for the study area and predictive models were developed. The area-under-the-receiver operating characteristics curve (AUC) and true-skill statistics (TSS) were used to validate the maps of the models' predictions. The results show that the RF algorithm performed best (AUC = 89.4% and TSS = 0.751), followed by the SVM (AUC = 87.5%, TSS = 0.73) and the MARS algorithm (AUC = 81%, TSS = 0.69). The results of the RF indicated that wind speed and land cover are the most important factors affecting dust generation. The region of highest dust-source potential that was identified by the RF is in the eastern parts of the study region. This model can be applied to other arid and semi-arid environments that experience dust storms to promote management that prevents desertification and reduces dust production.

13.
Sensors (Basel) ; 20(5)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121238

RESUMEN

Gully erosion is a form of natural disaster and one of the land loss mechanisms causing severe problems worldwide. This study aims to delineate the areas with the most severe gully erosion susceptibility (GES) using the machine learning techniques Random Forest (RF), Gradient Boosted Regression Tree (GBRT), Naïve Bayes Tree (NBT), and Tree Ensemble (TE). The gully inventory map (GIM) consists of 120 gullies. Of the 120 gullies, 84 gullies (70%) were used for training and 36 gullies (30%) were used to validate the models. Fourteen gully conditioning factors (GCFs) were used for GES modeling and the relationships between the GCFs and gully erosion was assessed using the weight-of-evidence (WofE) model. The GES maps were prepared using RF, GBRT, NBT, and TE and were validated using area under the receiver operating characteristic(AUROC) curve, the seed cell area index (SCAI) and five statistical measures including precision (PPV), false discovery rate (FDR), accuracy, mean absolute error (MAE), and root mean squared error (RMSE). Nearly 7% of the basin has high to very high susceptibility for gully erosion. Validation results proved the excellent ability of these models to predict the GES. Of the analyzed models, the RF (AUROC = 0.96, PPV = 1.00, FDR = 0.00, accuracy = 0.87, MAE = 0.11, RMSE = 0.19 for validation dataset) is accurate enough for modeling and better suited for GES modeling than the other models. Therefore, the RF model can be used to model the GES areas not only in this river basin but also in other areas with the same geo-environmental conditions.

14.
J Environ Manage ; 260: 109867, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32090793

RESUMEN

Forests are important dynamic systems which are widely affected by fire worldwide. Due to the complexity and non-linearity of the forest fire problem, employing hybrid evolutionary algorithms is a logical task to achieve a reliable approximation of this environmental threat. Three fuzzy-metaheuristic ensembles, based on adaptive neuro-fuzzy inference systems (ANFIS) incorporated with genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE) evolutionary algorithms are used to produce the forest fire susceptibility map (FFSM) of a fire-prone region in Iran. A sensitivity analysis is also executed to evaluate the effectiveness of the proposed ensembles in terms of time and complexity. The results revealed that all models produce FFSMs with acceptable accuracy. However, the superiority of the GA-ANFIS was shown in both recognizing the pattern (AUROCtrain = 0.912 and Error = 0.1277) and predicting unseen fire events (AUROCtest = 0.850 and Error = 0.1638). The optimized structures of the proposed GA-ANFIS and PSO-ANFIS ensembles could be good alternatives to traditional forest fire predictive models, and their FFSMs can be promisingly used for future planning and decision making in the proposed area.


Asunto(s)
Incendios Forestales , Algoritmos , Lógica Difusa , Irán
15.
Sci Total Environ ; 715: 136836, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32007881

RESUMEN

Groundwater resources constitute the main source of clean fresh water for domestic use and it is essential for food production in the agricultural sector. Groundwater has a vital role for water supply in the Campanian Plain in Italy and hence a future sustainability of the resource is essential for the region. In the current paper novel data mining algorithms including Gaussian Process (GP) were used in a large groundwater quality database to predict nitrate (contaminant) and strontium (potential future increasing) concentrations in groundwater. The results were compared with M5P, random forest (RF) and random tree (RT) algorithms as a benchmark to test the robustness of the modeling process. The dataset includes 246 groundwater quality samples originating from different wells, municipals and agricultural. It was divided for the modeling process into two subgroups by using the 10-fold cross validation technique including 173 samples for model building (training dataset) and 73 samples for model validation (testing dataset). Different water quality variables including T, pH, EC, HCO3-, F-, Cl-, SO42-, Na+, K+, Mg2+, and Ca2+ have been used as an input to the models. At first stage, different input combinations have been constructed based on correlation coefficient and thus the optimal combination was chosen for the modeling phase. Different quantitative criteria alongside with visual comparison approach have been used for evaluating the modeling capability. Results revealed that to obtain reliable results also variables with low correlation should be considered as an input to the models together with those variables showing high correlation coefficients. According to the model evaluation criteria, GP algorithm outperforms all the other models in predicting both nitrate and strontium concentrations followed by RF, M5P and RT, respectively. Result also revealed that model's structure together with the accuracy and structure of the data can have a relevant impact on the model's results.

16.
Sci Total Environ ; 712: 136492, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-31927448

RESUMEN

Taking into account the exponential growth of the number of flash-floods events worldwide, the detection of areas prone to these natural hazards is one of the main activities taken in order to mitigate the negative effects of these risk phenomena. In the present paper, new modeling approaches, Alternating Decision Tree (ADT) integrated with IOE (ADT-IOE) and ADT integrated with AHP (ADT-AHP), were proposed for flash-flood susceptibility mapping across the Suha river catchment (Romania). Besides, two stand-alone methods, Index of Entropy (IOE) and Analytical Hierarchy Process (AHP), were also investigated. For this regard, 111 torrential points and 111 non-torrential points along with 8 flash-flood conditioning factors have been involved in the training process of the four models. The quality of the flash-flood models was checked by using the ROC Curve method, classification accuracy (CLA), and Kappa index. The result shows that the two ensemble models, the ADT-IOE (AUC = 0.972, CLC = 86.37%, Kappa statistics = 0.727) and the ADT-AHP (AUC = 0.926, CLA = 87.88%, Kappa statistics = 0.758), have high prediction performance and outperform the other models. Therefore, ADT-IOE and ADT-AHP are new and promising tools for flash-flood susceptibility modeling.

17.
Sensors (Basel) ; 20(2)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936038

RESUMEN

Gully erosion is a problem; therefore, it must be predicted using highly accurate predictive models to avoid losses caused by gully development and to guarantee sustainable development. This research investigates the predictive performance of seven multiple-criteria decision-making (MCDM), statistical, and machine learning (ML)-based models and their ensembles for gully erosion susceptibility mapping (GESM). A case study of the Dasjard River watershed, Iran uses a database of 306 gully head cuts and 15 conditioning factors. The database was divided 70:30 to train and verify the models. Their performance was assessed with the area under prediction rate curve (AUPRC), the area under success rate curve (AUSRC), accuracy, and kappa. Results show that slope is key to gully formation. The maximum entropy (ME) ML model has the best performance (AUSRC = 0.947, AUPRC = 0.948, accuracy = 0.849 and kappa = 0.699). The second best is the random forest (RF) model (AUSRC = 0.965, AUPRC = 0.932, accuracy = 0.812 and kappa = 0.624). By contrast, the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) model was the least effective (AUSRC = 0.871, AUPRC = 0.867, accuracy = 0.758 and kappa = 0.516). RF increased the performance of statistical index (SI) and frequency ratio (FR) statistical models. Furthermore, the combination of a generalized linear model (GLM), and functional data analysis (FDA) improved their performances. The results demonstrate that a combination of geographic information systems (GIS) with remote sensing (RS)-based ML models can successfully map gully erosion susceptibility, particularly in low-income and developing regions. This method can aid the analyses and decisions of natural resources managers and local planners to reduce damages by focusing attention and resources on areas prone to the worst and most damaging gully erosion.

18.
Sci Total Environ ; 699: 134230, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31522053

RESUMEN

A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994-2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability.

19.
Sci Total Environ ; 701: 134413, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31706212

RESUMEN

This research proposes and evaluates a new approach for flash flood susceptibility mapping based on Deep Learning Neural Network (DLNN)) algorithm, with a case study at a high-frequency tropical storm area in the northwest mountainous region of Vietnam. Accordingly, a DLNN structure with 192 neurons in 3 hidden layers was proposed to construct an inference model that predicts different levels of susceptibility to flash flood. The Rectified Linear Unit (ReLU) and the sigmoid were selected as the activate function and the transfer function, respectively, whereas the Adaptive moment estimation (Adam) was used to update and optimize the weights of the DLNN. A database for the study area, which includes factors of elevation, slope, curvature, aspect, stream density, NDVI, soil type, lithology, and rainfall, was established to train and validate the proposed model. Feature selection was carried out for these factors using the Information gain ratio. The results show that the DLNN attains a good prediction accuracy with Classification Accuracy Rate = 92.05%, Positive Predictive Value = 94.55% and Negative Predictive Value = 89.55%. Compared to benchmarks, Multilayer Perceptron Neural Network and Support Vector Machine, the DLNN performs better; therefore, it could be concluded that the proposed hybridization of GIS and deep learning can be a promising tool to assist the government authorities and involving parties in flash flood mitigation and land-use planning.

20.
Sci Total Environ ; 718: 134656, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31839310

RESUMEN

Widespread detrimental and long-lasting droughts are having catastrophic impacts around the globe. Researchers, organizations, and policy makers need to work together to obtain precise information, enabling timely and accurate decision making to mitigate drought impacts. In this study, a spatial modeling approach based on an adaptive neuro-fuzzy inference system (ANFIS) and several metaheuristic optimizations (ANFIS-BA, ANFIS-GA, ANFIS-ICA, ANFIS-PSO) was developed to predict the spatial occurrence of drought in a region in southeastern Queensland, Australia. In this approach, data describing the distribution of eight drought-contributing factors were prepared for input into the models to serve as independent variables. Relative departures of rainfall (RDR) and relative departures of soil moisture (RDSM) were analyzed to identify locations where drought conditions have occurred. The set of locations in the study area identified as having experienced drought conditions was randomly divided into two groups, 70% were used for training and 30% for validation. The models employed these data to generate maps that predict the locations that would be expected to experience drought. The prediction accuracy of the model-produced drought maps was scrutinized with two evaluation metrics: area under the receiver operating characteristic curve (AUC) and root mean square error (RMSE). The results demonstrate that the hybridized models (ANFIS-BA (AUCmean = 83.7%, RMSEmean = 0.236), ANFIS-GA (AUCmean = 81.62%, RMSEmean = 0.247), ANFIS-ICA (AUCmean = 82.12%, RMSEmean = 0.247), and ANFIS-PSO (AUCmean = 81.42%, RMSEmean = 0.255)) yield better predictive performance than the standalone ANFIS model (AUCmean = 71.8%, RMSEmean = 0.344). Furthermore, sensitivity analyses indicated that plant-available water capacity, the percentage of soil comprised of sand, and mean annual precipitation were the most important predictors of drought hazard. The versatility of the new approach for spatial drought modeling and the capacity of ANFIS model hybridization to improve model performance suggests great potential to assist decision makers in their formulations of drought risk, recovery, and response management, and in the development of contingency plans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA