Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(26): 34266-34280, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904375

RESUMEN

Two different types of electrolytes (co-solvent and multi-salt) are tested for use in high voltage LiNi0.5Mn1.5O4||Si/graphite full cells and compared against a carbonate-based standard LiPF6 containing electrolyte (baseline). Ex situ postmortem XPS analysis on both anodes and cathodes over the life span of the cells reveals a continuously growing SEI and CEI for the baseline electrolyte. The cells cycled in the co-solvent electrolyte exhibited a relatively thick and long-term stable CEI (on LNMO), while a slowly growing SEI was determined to form on the Si/graphite. The multi-salt electrolyte offers more inorganic-rich SEI/CEI while also forming the thinnest SEI/CEI observed in this study. Cross-talk is identified in the baseline electrolyte cell, where Si is detected on the cathode, and Mn is detected on the anode. Both the multi-salt and co-solvent electrolytes are observed to substantially reduce this cross-talk, where the co-solvent is found to be the most effective. In addition, Al corrosion is detected for the multi-salt electrolyte mainly at its end-of-life stage, where Al can be found on both the anode and cathode. Although the co-solvent electrolyte offers superior interface properties in terms of the limitation of cross-talk, the multi-salt electrolyte offers the best overall performance, suggesting that interface thickness plays a superior role compared to cross-talk. Together with their electrochemical cycling performance, the results suggest that multi-salt electrolyte provides a better long-term passivation of the electrodes for high-voltage cells.

2.
Molecules ; 26(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34361689

RESUMEN

Porous silica-based materials are a promising alternative to graphite anodes for Li-ion batteries due to their high theoretical capacity, low discharge potential similar to pure silicon, superior cycling stability compared to silicon, abundance, and environmental friendliness. However, several challenges prevent the practical application of silica anodes, such as low coulombic efficiency and irreversible capacity losses during cycling. The main strategy to tackle the challenges of silica as an anode material has been developed to prepare carbon-coated SiO2 composites by carbonization in argon atmosphere. A facile and eco-friendly method of preparing carbon-coated SiO2 composites using sucrose is reported herein. The carbon-coated SiO2 composites were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, cyclic voltammetry, and charge-discharge cycling. A C/SiO2-0.085 M calendered electrode displays the best cycling stability, capacity of 714.3 mAh·g-1, and coulombic efficiency as well as the lowest charge transfer resistance over 200 cycles without electrode degradation. The electrochemical performance improvement could be attributed to the positive effect of the carbon thin layer that can effectively diminish interfacial impedance.

3.
Mater Sci Eng C Mater Biol Appl ; 51: 233-41, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25842130

RESUMEN

In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2'-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70°C for 24h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, (13)C, (29)Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization.


Asunto(s)
Materiales Biocompatibles Revestidos/síntesis química , Fibroínas/química , Metacrilatos/química , Nanofibras/química , Polimetil Metacrilato/química , Adsorción , Corrosión , Biología Marina/métodos , Ensayo de Materiales , Nanofibras/ultraestructura , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA