Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 82(19): 7935-42, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20804170

RESUMEN

We benchmark the performance of a photoacoustic spectrometer with a calculable cell constant in applications related to climate change measurements. As presently implemented, this spectrometer has a detection limit of 3.1 × 10(-9) W cm(-1) Hz(-1/2) for absorption by a gas and 1.5 × 10(-8) W cm(-1) Hz(-1/2) for soot particles. Nonstatistical uncertainty limited the accuracy of the instrument to ∼1%, and measurements of the concentration of CO(2) in laboratory air agreed with measurements made using a cavity ring-down spectrometer, to within 1%. Measurements of the enhanced absorption resulting from ultrathin (<5 nm), nonabsorbing coatings on nanoscale soot particles demonstrate the sensitivity of this instrument. Together, these measurements show the instrument's ability to quantitatively measure the absorption coefficient for species of interest to the climate and atmospheric science communities. Because the system constant is known, in most applications the acoustic response of this instrument need not be calibrated against a sample of known optical density, a decided advantage in field applications. Routine enhancements, such as improved processing of the photoacoustic signal and higher laser beam power, should further increase the instrument's precision and sensitivity.

2.
J Sep Sci ; 27(5-6): 389-96, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15335074

RESUMEN

A simple flow-switching device has been designed for use as a comprehensive two-dimensional gas chromatography modulator. The device is constructed from fused silica tubing, t-unions, and a solenoid valve. A series of experiments were conducted to determine the influence of primary flow, secondary flow, modulation time, and device dimensions on the performance of the modulator. The flow-switching device was found to produce pulses with widths near the theoretical minimum. High-performance was maintained over a wide range of modulation times. The flow-switching device did not introduce extra broadening along the primary retention axis. However, the modulator performance was optimal only over a narrow range of primary to secondary flow ratios. The ideal flow ratio is determined by the dimensions of the tubes that connect the t-unions. A simple flow resistance model has been developed that can predict the dimensions that will produce optimal results for a specified primary to secondary flow ratio. Thus, it is possible to construct a device that operates near the theoretical limit without numerous alterations. Under optimal conditions, the flow switching modulator generates peaks that are narrower than those produced by a diaphragm valve.

3.
J Chromatogr A ; 1027(1-2): 3-10, 2004 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-14971477

RESUMEN

A simple flow-switching device has been developed as a differential flow modulator for comprehensive two-dimensional gas chromatography (GC x GC). The device is assembled from tubing, four tee unions, and a solenoid valve. The solenoid valve is located outside the oven of the gas chromatograph and is not in the sample path. The modulation technique has no inherent temperature restrictions and passes 100% of the primary column effluent to the secondary column(s). Secondary peaks are produced with widths at half maximum less than 100 ms when operating in GC x 2GC mode with a 2.0 s modulation period. The efficacy of this approach is demonstrated through the analysis of a standard mixture of volatile organic compounds (VOCs) and diesel fuel.


Asunto(s)
Cromatografía de Gases/instrumentación , Cromatografía de Gases/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA