Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 16(28): 4743-4754, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38952194

RESUMEN

Various metal ions exist in nature and human beings and play limitless vital roles in both the atmosphere and biology. A fundamental and useful aspect is the qualitative and quantitative assessment of Zn(II) at concentration levels as low as parts per billion (ppb). Thus, the design and development of novel fluorescent turn-on receptors have gained significant interest because of their potential for use in live cell imaging to detect biologically relevant metal ions with high selectivity and sensitivity. The present research illustrates the design and synthesis of a novel fluorescent sensor [(1,3,5-triazine-2,4,6-triyl)tris(hydrazine-2-yl-1-ylidene)tris(methaneylylidene)]tris(2,4-di-tert-butylphenol) (THDBP) for the selective and sensitive probing of Zn(II). The sensor exhibited a fluorescence turn-on mechanism upon treatment with Zn(II) ions at λemi. 503 nm in aq. acetonitrile. The formation of a 1 : 3 complex between THDBP and Zn(II) is confirmed from the Job plot and ESI-MS spectrum. The evaluated limit of detection (LOD) and association constant (Ka) of the sensor THDBP for Zn(II) were found to be 1.03 × 10-10 M and 2.33 × 108 M-1, respectively. Further research demonstrates the practical application of the sensor for the detection of Zn(II) ions in live cells. The sensing ability of the sensor THDBP was also explored through inexpensive test strips and TLC sheets.


Asunto(s)
Colorantes Fluorescentes , Bases de Schiff , Zinc , Zinc/análisis , Zinc/química , Humanos , Colorantes Fluorescentes/química , Bases de Schiff/química , Cromatografía en Capa Delgada/métodos , Espectrometría de Fluorescencia/métodos , Células HeLa , Imagen Óptica/métodos , Límite de Detección
2.
Anal Methods ; 16(13): 1934-1947, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38497319

RESUMEN

Cation and anion sensing is vital owing to their universal dispersion in ecosystems and biological functions. It has been shown that fluorescent receptors based on organic platforms are efficient for detecting a number of ions and have many advantages such as low cost, superior sensitivity and simplicity in installation. This study demonstrates the design and synthesis of a novel receptor (E)-3-[(3,5-di-tert-butyl-2-hydroxybenzylidene)amino]-2-(pyren-1-yl)-2,3-dihydroquinazolin-4(1H)-one (DTQ) for the rapid recognition of Zn(II) ions. DTQ exhibited a significant fluorometric "turn-on" characteristic towards Zn(II) at λmax 444 nm in aqueous acetonitrile by inhibiting the photo-induced electron transfer (PET) and -CN- process. The ESI-MS analysis and Job's plot experimental results confirmed stoichiometric 1 : 1 complex formation between DTQ and Zn(II). Fluorometric investigations revealed the detection limit and association constant of DTQ towards Zn(II), which were found to be 13.4 nM and 1.47 × 105 M-1, respectively. DTQ was employed to sense Zn(II) on low-cost test strips. The present research findings imply that DTQ can function as an effective sensor for Zn(II).


Asunto(s)
Ecosistema , Colorantes Fluorescentes , Quinazolinas , Espectrometría de Fluorescencia/métodos , Zinc/análisis , Imagen Óptica/métodos , Iones
3.
J Fluoresc ; 33(3): 1041-1056, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36565412

RESUMEN

In this work, structurally similar, (E)-N'-(2-hydroxybenzylidene)-3,5-di-tert-butyl-2-hydroxybenzohydrazide (A) and (E)-N'-(2-4-dihydroxybenzylidene)-3,5-di-tert-butyl-2-hydroxybenzohydrazide (A-OH) dyes dissolved in general solvents have been studied to explore photo-physical properties, employing solvatochromic shift method, thereby determining their dipole moments in the ground (µg) and excited (µe) states. The molecule A shows a bathochromic shift of fluorescence emission maxima in aprotic solvents whereas a hypsochromic shift in protic solvents. Interestingly, A-OH follows a hypsochromic shift in both protic and aprotic solvents with increasing solvent polarity. The effect of hydroxyl substituent on UV-Visible absorption, fluorescence emission, and dipole moment of the titled organic molecules was explained. Theoretical methods such as Bilot-Kawski method for determination of µg and µe and Bakshiev, Kawski-Chamma-Viallet, Lippert-Mataga equations for µe, and Reichardt method for the difference between µg and µe were employed. It is observed that µe is higher than that of µg for both the molecules, and interestingly, upon substituting an additional hydroxyl group the value of µg has increased while µe is decreased. The DFT calculations have been performed to support experimental results by employing DFT/B3LYP/6-311G + (d) and TD-DFT/B3LYP/6-311G + (d) method using Gaussian09 software. The electrophilic and nucleophilic sites on the molecules were studied with the help of MEP. The NBO analysis results show that the interaction N24 (σ) → C22-O23 (π*) is found to be stronger in both the molecules with energy 68.90 kJ/mol and the effect of hydroxyl group is also discussed on the basis of HOMO and LUMO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA