Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Rec ; 24(2): e202300217, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37668274

RESUMEN

Responsive polymer systems have the ability to change properties or behavior in response to external stimuli. The properties of responsive polymer systems can be fine-tuned by adjusting the stimuli, enabling tailored responses for specific applications. These systems have applications in drug delivery, biosensors, tissue engineering, and more, as their ability to adapt and respond to dynamic environments leads to improved performance. However, challenges such as synthesis complexity, sensitivity limitations, and manufacturing issues need to be addressed for successful implementation. In our review, we provide a comprehensive summary on stimuli-responsive polymer systems, delving into the intricacies of their mechanisms and actions. Future developments should focus on precision medicine, multifunctionality, reversibility, bioinspired designs, and integration with advanced technologies, driving the dynamic growth of sensitive polymer systems in biomedical applications.


Asunto(s)
Técnicas Biosensibles , Polímeros de Estímulo Receptivo , Sistemas de Liberación de Medicamentos , Polímeros , Ingeniería de Tejidos
2.
ACS Biomater Sci Eng ; 9(11): 6256-6272, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37874897

RESUMEN

The fabrication of multifunctional, thermoresponsive platforms for regenerative medicine based on polymers that can be easily functionalized is one of the most important challenges in modern biomaterials science. In this study, we utilized atom transfer radical polymerization (ATRP) to produce two series of novel smart copolymer brush coatings. These coatings were based on copolymerizing 2-hydroxyethyl methacrylate (HEMA) with either oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or N-isopropylacrylamide (NIPAM). The chemical compositions of the resulting brush coatings, namely, poly(oligo(ethylene glycol) methyl ether methacrylate-co-2-hydroxyethyl methacrylate) (P(OEGMA-co-HEMA)) and poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (P(NIPAM-co-HEMA)), were predicted using reactive ratios of the monomers. These predictions were then verified using time-of-flight-secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The thermoresponsiveness of the coatings was examined through water contact angle (CA) measurements at different temperatures, revealing a transition driven by lower critical solution temperature (LCST) or upper critical solution temperature (UCST) or a vanishing transition. The type of transition observed depended on the chemical composition of the coatings. Furthermore, it was demonstrated that the transition temperature of the coatings could be easily adjusted by modifying their composition. The topography of the coatings was characterized using atomic force microscopy (AFM). To assess the biocompatibility of the coatings, dermal fibroblast cultures were employed, and the results indicated that none of the coatings exhibited cytotoxicity. However, the shape and arrangement of the cells were significantly influenced by the chemical structure of the coating. Additionally, the viability of the cells was correlated with the wettability and roughness of the coatings, which determined the initial adhesion of the cells. Lastly, the temperature-induced changes in the properties of the fabricated copolymer coatings effectively controlled cell morphology, adhesion, and spontaneous detachment in a noninvasive, enzyme-free manner that was confirmed using optical microscopy.


Asunto(s)
Polímeros , Medicina Regenerativa , Polímeros/química , Metacrilatos/química
3.
Langmuir ; 39(29): 10216-10229, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37437262

RESUMEN

Immunosensors that combine planar transducers with microfluidics to achieve in-flow biofunctionalization and assay were analyzed here regarding surface binding capacity, immobilization stability, binding stoichiometry, and amount and orientation of surface-bound IgG antibodies. Two IgG immobilization schemes, by physical adsorption [3-aminopropyltriethoxysilane (APTES)] and glutaraldehyde covalent coupling (APTES/GA), followed by blocking with bovine serum albumin (BSA) and streptavidin (STR) capture, are monitored with white light reflectance spectroscopy (WLRS) sensors as thickness dΓ of the adlayer formed on top of aminosilanized silicon chips. Multi-protein surface composition (IgG, BSA, and STR) is determined by time of flight secondary ion mass spectrometry (TOF-SIMS) combined with principal component analysis (applying barycentric coordinates to the score plot). In-flow immobilization shows at least 1.7 times higher surface binding capacity than static adsorption. In contrast to physical immobilization, which is unstable during blocking with BSA, chemisorbed antibodies desorb (reducing dΓ) only when the bilayer is formed. Also, TOF-SIMS data show that IgG molecules are partially exchanged with BSA on APTES but not on APTES/GA modified chips. This is confirmed by the WLRS data that show different binding stoichiometry between the two immobilization schemes for the direct binding IgG/anti-IgG assay. The identical binding stoichiometry for STR capture results from partial replacement with BSA of vertically aligned antibodies on APTES, with fraction of exposed Fab domains higher than on APTES/GA.


Asunto(s)
Técnicas Biosensibles , Silicio , Silicio/química , Técnicas Biosensibles/métodos , Espectrometría de Masa de Ion Secundario , Inmunoensayo , Análisis Espectral , Anticuerpos , Estreptavidina , Propiedades de Superficie , Adsorción
4.
ACS Appl Mater Interfaces ; 15(6): 8676-8690, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36734329

RESUMEN

Novel brush coatings were fabricated with glass surface-grafted chains copolymerized using surface-initiated atom transfer radical polymerization (SI-ATRP) from 2-(2-methoxyethoxy)ethyl methacrylate (OEGMA188) and acrylamide (AAm), taken in different proportions. P(OEGMA188-co-AAm) brushes with AAm mole fraction >44% (determined with XPS and TOF-SIMS spectroscopy) and nearly constant with the depth copolymer composition (TOF-SIMS profiling) exhibit unusual temperature-induced transformations: The contact angle of water droplets on P(OEGMA188-co-AAm) coatings increases by ∼45° with temperature, compared to 17-18° for POEGMA188 and PAAm. The thickness of coatings immersed in water and the morphology of coatings imaged in air show a temperature response for POEGMA188 (using reflectance spectroscopy and AFM, respectively), but this response is weak for P(OEGMA188-co-AAm) and absent for PAAm. This suggests mechanisms more complex than a simple transition between hydrated loose coils and hydrophobic collapsed chains. For POEGMA188, the hydrogen bonds between the ether oxygens of poly(ethylene glycol) and water hydrogens are formed below the transition temperature Tc and disrupted above Tc when polymer-polymer interactions are favored. Different hydrogen bond structures of PAAm include free amide groups, cis-trans-multimers, and trans-multimers of amide groups. Here, hydrogen bonds between free amide groups and water dominate at T < Tc but structures favored at T > Tc, such as cis-trans-multimers and trans-multimers of amide groups, can still be hydrated. The enhanced temperature-dependent response of wettability for P(OEGMA188-co-AAm) with a high mole fraction of AAm suggests the formation at Tc of more hydrophobic structures, realized by hydrogen bonding between the ether oxygens of OEGMA188 and the amide fragments of AAm, where water molecules are caged. Furthermore, P(OEGMA188-co-AAm) coatings immersed in pH buffer solutions exhibit a 'schizophrenic' behavior in wettability, with transitions that mimic LCST and UCST for pH = 3, LCST for pH = 5 and 7, and any transition blocked for pH = 9.

5.
J Phys Chem B ; 127(1): 387-395, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36563061

RESUMEN

The development of topography plays an important role when low-energy projectiles are used to modify the surface or analyze the properties of various materials. It can be a feature that allows one to create complex structures on the sputtered surface. It can also be a factor that limits depth resolution in ion-based depth profiling methods. In this work, we have studied the evolution of microdendrites on poly(methyl methacrylate) sputtered with a Cs 1 keV ion beam. Detailed analysis of the topography of the sputtered surface shows a sea of pillars with islands of densely packed pillars, which eventually evolve to fully formed dendrites. The development of the dendrites depends on the Cs fluence and temperature. Analysis of the sputtered surface by physicochemical methods shows that the mechanism responsible for the formation of the observed microstructures is reactive ion sputtering. It originates from the chemical reaction between the target material and primary projectile and is combined with mass transport induced by ion sputtering. The importance of chemical reaction for the formation of the described structures is shown directly by comparing the change in the surface morphology under the same dose of a nonreactive 1 keV xenon ion beam.


Asunto(s)
Cesio , Polimetil Metacrilato , Dendritas
6.
Polymers (Basel) ; 14(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36236192

RESUMEN

Modern biomedical technologies predict the application of materials and devices that not only can comply effectively with specific requirements, but also enable remote control of their functions. One of the most prospective materials for these advanced biomedical applications are materials based on temperature-responsive polymer brush coatings (TRPBCs). In this review, methods for the fabrication and characterization of TRPBCs are summarized, and possibilities for their application, as well as the advantages and disadvantages of the TRPBCs, are presented in detail. Special attention is paid to the mechanisms of thermo-responsibility of the TRPBCs. Applications of TRPBCs for temperature-switchable bacteria killing, temperature-controlled protein adsorption, cell culture, and temperature-controlled adhesion/detachment of cells and tissues are considered. The specific criteria required for the desired biomedical applications of TRPBCs are presented and discussed.

7.
Molecules ; 27(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35744796

RESUMEN

The orientation of antibodies, employed as capture molecules on biosensors, determines biorecognition efficiency and bioassay performance. In a previous publication we demonstrated for antibodies attached covalently to silicon that an increase in their surface amount Γ, evaluated with ellipsometry, induces changes in their orientation, which is traced directly using Time-of-Flight Secondary Ion Mass Spectroscopy combined with Principal Component Analysis. Here, we extend the above studies to antibodies adsorbed physically on a 3-aminopropyltriethoxysilane (APTES) monolayer. Antibodies physisorbed on APTES (0 ≤ Γ ≤ 3.5 mg/m2) reveal the Γ ranges for flat-on, side-on, and vertical orientation consistent with random molecular packing. The relation between orientation and Γ is juxtaposed for silicon functionalized with APTES, APTES modified with glutaraldehyde (APTES/GA) and N-hydroxysuccinimide-silane (NHS-silane). Antibody reorientation occurs at lower Γ values when physisorption (APTES) is involved rather than chemisorption (APTES/GA, NHS-silane). At high Γ values, comparable proportions of molecules adapting head-on and tail-on vertical alignment are concluded for APTES and the NHS-silane monolayer, and they are related to intermolecular dipole-dipole interactions. Intermolecular forces seem to be less decisive than covalent binding for antibodies on the APTES/GA surface, with dominant head-on orientation. Independently, the impact of glutaraldehyde activation of APTES on vertical orientation is confirmed by separate TOF-SIMS measurements.


Asunto(s)
Silanos , Silicio , Adsorción , Anticuerpos , Glutaral/química , Silanos/química , Silicio/química , Propiedades de Superficie
8.
Chem Eng J ; 446: 137048, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35601363

RESUMEN

Viruses pose a serious threat to human health and society in general, as virus infections are one of the main causes of morbidity and mortality. Till May 2022, over 513 million people around the world have been confirmed to be infected and more than 6.2 million have died due to SARS-CoV-2. Although the COVID-19 pandemic will be defeated in the near future, we are likely to face new viral threats in the coming years. One of the important instruments to protect from viruses are antiviral surfaces, which are essentially capable of limiting their spread. The formulation of the concept of antiviral surfaces is relatively new. In general, five types of mechanism directed against virus spread can be proposed for antiviral surfaces; involving: direct and indirect actions, receptor inactivation, photothermal effect, and antifouling behavior. All antiviral surfaces can be classified into two main types - passive and active. Passive antiviral surfaces are based on superhydrophobic coatings that are able to repel virus contaminated droplets. In turn, viruses can become biologically inert (e.g., blocked or destroyed) upon contact with active antiviral surfaces, as they contain antiviral agents: metal atoms, synthetic or natural polymers, and small molecules. The functionality of antiviral surfaces can be significantly improved with additional properties, such as temperature- or pH-responsivity, multifunctionality, non-specific action on different virus types, long-term application, high antiviral efficiency and self-cleaning.

9.
Materials (Basel) ; 15(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35329669

RESUMEN

Domains rich in different blend components phase-separate during deposition, creating a film morphology that determines the performance of active layers in organic electronics. However, morphological control either relies on additional fabrication steps or is limited to a small region where an external interaction is applied. Here, we show that different semiconductor-insulator polymer composites can be rapidly dip-coated with the film structure electrically switched between distinct morphologies during deposition guided by the meniscus formed between the stationary barrier and horizontally drawn solid substrate. Reversible and repeatable changes between the morphologies used in devices, e.g., lateral morphologies and stratified layers of semiconductors and insulators, or between phase-inverted droplet-like structures are manifested only for one polarity of the voltage applied across the meniscus as a rectangular pulse. This phenomenon points to a novel mechanism, related to voltage-induced doping and the doping-dependent solubility of the conjugated polymer, equivalent to an increased semiconductor content that controls the composite morphologies. This is effective only for the positively polarized substrate rather than the barrier, as the former entrains the nearby lower part of the coating solution that forms the final composite film. The mechanism, applied to the pristine semiconductor solution, results in an increased semiconductor deposition and 40-times higher film conductance.

10.
Materials (Basel) ; 14(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804043

RESUMEN

In the present work, we have successfully prepared and characterized novel nanocomposite material exhibiting temperature-dependent surface wettability changes, based on grafted brush coatings of non-fouling poly(di(ethylene glycol)methyl ether methacrylate) (POEGMA) with the embedded CaCO3 nanoparticles. Grafted polymer brushes attached to the glass surface were prepared in a three-step process using atom transfer radical polymerization (ATRP). Subsequently, uniform CaCO3 nanoparticles (NPs) embedded in POEGMA-grafted brush coatings were synthesized using biomineralized precipitation from solutions of CaCl2 and Na2CO3. An impact of the low concentration of the embedded CaCO3 NPs on cell adhesion and growth depends strongly on the type of studied cell line: keratinocytes (HaCaT), melanoma (WM35) and osteoblastic (MC3T3-e1). Based on the temperature-responsive properties of grafted brush coatings and CaCO3 NPs acting as biologically active substrate, we hope that our research will lead to a new platform for tissue engineering with modified growth of the cells due to the release of biologically active substances from CaCO3 NPs and the ability to detach the cells in a controlled manner using temperature-induced changes of the brush.

11.
Anal Bioanal Chem ; 412(29): 8093-8106, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32959112

RESUMEN

Microvesicles (MVs) are found in several types of body fluids and are promising disease biomarkers and therapeutic targets. This study aimed to develop a novel biofunctionalized surface for binding plasma microvesicles (PMVs) based on a lab-on-a-chip (LOC) approach. A new lactadherin (LACT)-functionalized surface was prepared and examined for monitoring PMVs. Moreover, two different strategies of LACT immobilization on a silicon surface were applied to compare different LACT orientations. A higher PMV to LACT binding efficiency was observed for LACT bonded to an αvß3 integrin-functionalized surface compared with that for LACT directly bonded to a glutaraldehyde-modified surface. Effective binding of PMVs and its components for both LACT immobilization strategies was confirmed using spectral ellipsometry and time-of-flight secondary ion mass spectrometry methods. The proposed PMV capturing system can be used as a foundation to design novel point-of-care (POC) diagnostic devices to detect and characterize PMVs in clinical samples. Graphical Abstract.


Asunto(s)
Micropartículas Derivadas de Células/química , Sistemas de Atención de Punto , Silicio/química , Humanos , Dispositivos Laboratorio en un Chip , Microscopía de Fuerza Atómica , Plasma/química , Espectrometría de Masa de Ion Secundario , Propiedades de Superficie
12.
Langmuir ; 36(40): 11817-11828, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32921057

RESUMEN

The stability of the film poly(n-butyl methacrylate) (PnBMA) with different tacticities, prepared on silicon oxide and exposed to aqueous phosphate-buffered saline with different concentrations of bovine serum albumin (CBSA between 0 and 4.5 mg/mL), was examined at temperatures close to the physiological limit (between 4 and 37 °C) with optical microscopy, contact angle measurements, atomic force microscopy, and time-of-flight secondary ion mass spectrometry. For PBS solutions with CBSA = 0, the stability of atactic PnBMA and dewetting of isotactic PnBMA was observed, caused by the interplay between the stabilizing long-range dispersion forces and the destabilizing short-range polar interactions. Analogous considerations of excess free energy cannot explain the retardation of dewetting observed for isotactic PnBMA in PBS solutions with higher CBSA. Instead, formation of a BSA overlayer, adsorbed preferentially but not exclusively to uncovered SiOx regions, is evidenced and postulated to hinder polymer dewetting. Polymer dewetting and protein patterning are obtained in one step, suggesting a simple approach to fabricate biomaterials with micropatterned proteins.

13.
Biointerphases ; 15(3): 031006, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32443936

RESUMEN

In the present work, three types of grafted brush coatings [P4VP, POEGMA246, and P(4VP-co-POEGMA246)] were successfully fabricated using graft polymerization of monomers "from the surface." The composition, thickness, and morphology of the grafted brush coatings were analyzed by TOF-SIMS, ellipsometry, and AFM, respectively. The chemical nature of the polymer surface plays a crucial role in the growth and development of the cow granulosa cells and, therefore, also oocyte-cumulus complexes. In comparison with other coatings, the P(4VP-co-POEGMA246) copolymer coating enables the formation of dispersed and small but numerous cell conglomerates and high cumulus expansion in oocyte-cumulus complexes with highly homogeneous cumulus layers surrounding the oocytes. Moreover, the cellular oxygen uptake for this coating in the presence of NaF (inhibitor glycolysis) was stimulated. This new (4VP-co-POEGMA246) copolymer nanostructured coating is a promising material for granulosa cell and oocyte-cumulus complex cultivation and possibly will have great potential for applications in veterinary and reproductive medicine.


Asunto(s)
Células del Cúmulo/citología , Células de la Granulosa/citología , Oocitos/citología , Polímeros/farmacología , Animales , Bovinos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células del Cúmulo/efectos de los fármacos , Células del Cúmulo/metabolismo , Femenino , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Polietilenglicoles/farmacología , Povidona/farmacología
14.
RSC Adv ; 10(17): 10155-10166, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35498562

RESUMEN

Non-cytotoxic, temperature-responsive and antibacterial poly(di(ethylene glycol)methyl ether methacrylate) - POEGMA188 based nanocomposite coatings attached to a glass surface were successfully prepared using ATRP polymerization. The thickness, morphology and wettability of the resulting coatings were analyzed using ellipsometry, AFM and contact angle measurements, respectively. The strong impact of the thicknesses of the POEGMA188 grafted brush coatings and content of AgNPs on the morphology and temperature-induced wettability changes of the nanocomposite was demonstrated. In addition to the strong temperature-dependent antibacterial activity, the proposed nanocomposite coatings have no significant cytotoxic effect towards normal cells. Moreover, the slight anti-cancer effect of AgNPs may be suggested.

15.
Mater Sci Eng C Mater Biol Appl ; 103: 109806, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31349441

RESUMEN

In the presented work "smart" antibacterial surfaces based on silver nanoparticles (AgNPs) embedded in temperature-responsive poly(di(ethylene glycol)methyl ether methacrylate) - (POEGMA188) as well as poly(4-vinylpyridine) - (P4VP) coatings attached to a glass surface were successfully prepared. The composition, thickness, morphology and wettability of the resulting coatings were analyzed using ToF-SIMS, XPS, EDX, ellipsometry, AFM, SEM and CA measurements, respectively. Temperature-switched killing of the bacteria was tested against Escherichia coli ATCC 25922 (representative of Gram-negative bacteria) and Staphylococcus aureus ATCC 25923 (representative of Gram-positive bacteria) at 4 and 37 °C. In general at 4 °C no significant difference was observed between the amounts of bacteria accounted on the grafted brush coatings and within the control sample. In contrast, at 37 °C almost no bacteria were visible for temperature-responsive coating with AgNPs, whereas the growth of bacteria remains not disturbed for "pure" coating, indicating strong temperature-dependent antibacterial properties of AgNPs integrated into brushes.


Asunto(s)
Antibacterianos/farmacología , Nanopartículas del Metal/química , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Microscopía de Fuerza Atómica , Espectroscopía de Fotoelectrones , Polietilenglicoles/química , Polivinilos/química , Plata/química , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Temperatura
16.
Anal Chem ; 91(15): 9885-9892, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31310097

RESUMEN

The multistep character of cancer progression makes it difficult to define a unique biomarker of the disease. Interdisciplinary approaches, combining various complementary techniques, especially those operating at a nanoscale level, potentially accelerate characterization of cancer cells or tissue properties. Here, we study a relation between the surface and biomechanical properties of melanoma cells, measured by mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). In total, seven cell lines have been studied. Six of them were melanoma cells derived from various stages of tumor progression: (1) WM115 cells derived from a 55 year old female skin melanoma at a vertical growth phase (VGP) in the primary melanoma site, (2) WM793 cells established from the vertical growth phase (VGP) of a primary skin melanoma lesion, (3) WM266-4 cells established from a cutaneous skin metastasis detected in the same patient as WM115 cells, (4) WM239 cells derived from a cutaneous skin metastasis, (5) 1205Lu cells originated from a lung metastasis diagnosed in the same patient as WM793 cells, and (6) A375P-cells were derived from a solid malignant tumor located in the lung. As a reference cell line, human epidermal melanocytes from adult skin (primary cell line HEMa-LP) were used. Results reveal low, medium, and large deformability of melanoma cells originating from vertical growth phase (VGP), and skin and lung metastasis, respectively. These changes were accompanied by distinct outcome from principal component analysis (PCA). In relation to VGP melanoma cells, cells from skin and lung metastasis reveal similar or significantly different surface properties. The largest deformability difference observed for cells from VGP and lung metastasis was accompanied by the largest separation of unspecific changes in their surface properties. In this way, we show the evidence that biomechanical and surface biochemical properties of cells change in parallel, indicating a potential of being used as nanobiophysical fingerprints of melanoma progression.


Asunto(s)
Melanoma/metabolismo , Fenómenos Biofísicos , Línea Celular Tumoral , Diagnóstico Diferencial , Progresión de la Enfermedad , Femenino , Humanos , Melanoma/patología , Persona de Mediana Edad , Estadificación de Neoplasias
17.
Biomacromolecules ; 20(6): 2185-2197, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31017770

RESUMEN

Poly( n-butyl methacrylate) (PBMA) or poly( n-butyl acrylate) (PBA)-grafted brush coatings attached to glass were successfully prepared using atom-transfer radical polymerization "from the surface". The thicknesses and composition of the PBMA and PBA coatings were examined using ellipsometry and time-of-flight secondary ion mass spectrometry (ToF-SIMS), respectively. For PBMA, the glass-transition temperature constitutes a range close to the physiological limit, which is in contrast to PBA, where the glass-transition temperature is around -55 °C. Atomic force microscopy studies at different temperatures suggest a strong morphological transformation for PBMA coatings, in contrast to PBA, where such essential changes in the surface morphology are absent. Besides, for PBMA coatings, protein adsorption depicts a strong temperature dependence. The combination of bovine serum albumin and anti-IgG structure analysis with the principal component analysis of ToF-SIMS spectra revealed a different orientation of proteins adsorbed to PBMA coatings at different temperatures. In addition, the biological activity of anti-IgG molecules adsorbed at different temperatures was evaluated through tracing the specific binding with goat IgG.


Asunto(s)
Acrilatos/química , Metacrilatos/química , Polímeros/química , Albúmina Sérica Bovina/química , Microscopía de Fuerza Atómica , Temperatura , Humectabilidad
18.
Mater Sci Eng C Mater Biol Appl ; 99: 1477-1484, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30889682

RESUMEN

We characterize an approach enabling dual protein positioning over broad polymer areas based on subsequent selective adsorption of two fluorescently labelled lectins, Concanavalin A (Con A) and Lentil Lectin (LcH), on self-assembled gradient patterns of thermoresponsive poly(N-isopropyl acrylamide) (PNIPAM) and polystyrene (PS) polymers blend, prepared by horizontal dipping technique. The film morphologies of gradient samples prior dual selective protein adsorption are mapped with scanning microscopy (AFM) and secondary ion mass spectrometry (ToF-SIMS), whereas adsorbed proteins are imaged with fluorescence microscope. ToF-SIMS analysis reveals surface composition consisting of PNIPAM-rich domains in PS-rich matrix. The two-step protein adsorption experiment results in selective adsorption of Con A and LcH to PNIPAM- and PS-rich phases, respectively. Integral geometry approach is used to compare quantitatively morphology of polymer patterns varied in domain size due to horizontal dipping casting. Minkowski measures are also used to compare quantitatively fluorescence micrographs of protein patches with SIMS images of original isotropic polymer patterns. It confirms that PNIPAM domains size increases with increasing speed. Further, Minkowski analysis unveiled that adsorbed proteins cover about 60-70% of polymer surface. What is more fluorescence micrographs acknowledge both no lectins contamination and no adsorption to interphase areas. Additionally, protein displacement effect is observed.


Asunto(s)
Ensayo de Materiales/métodos , Polímeros/química , Proteínas/química , Temperatura , Resinas Acrílicas/química , Adsorción , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Espectrometría de Masa de Ion Secundario , Propiedades de Superficie
19.
J Hazard Mater ; 359: 445-453, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30059886

RESUMEN

A label-free optical biosensor for the fast simultaneous determination of three mycotoxins, aflatoxin B1 (AFB1), fumonisin B1 (FB1) and deoxynivalenol (DON), in beer samples is presented. The biosensor is based on an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources onto a single chip. Multi-analyte determination is accomplished by functionalizing the sensing arms of individual MZIs with mycotoxin-protein conjugates. Assay is performed by pumping over the chip mixtures of calibrators or samples with a mixture of specific monoclonal antibodies, followed by reaction with a secondary anti-mouse IgG antibody. Reactions are monitored in real-time by continuously recording the MZI output spectra, which are then subjected to Discrete Fourier Transform to convert spectrum shifts to phase shifts. The detection limits achieved for AFB1, FB1 and DON were 0.8, 5.6 and 24 ng/ml, respectively, while the assay duration was 12 min. Recovery values ranging from 85 to 115% were determined in beer samples spiked with known concentrations of the three mycotoxins. In addition, beers of different types and origin were analysed with the biosensor developed and the results were compared with those provided by established laboratory methods, further supporting the accuracy of the proposed device.


Asunto(s)
Aflatoxina B1/análisis , Cerveza/análisis , Contaminación de Alimentos/análisis , Fumonisinas/análisis , Tricotecenos/análisis , Aflatoxina B1/inmunología , Anticuerpos Monoclonales/inmunología , Técnicas Biosensibles , Fumonisinas/inmunología , Inmunoglobulina G/inmunología , Tricotecenos/inmunología
20.
J Mater Chem B ; 6(11): 1613-1621, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32254277

RESUMEN

Poly(n-butyl methacrylate) (PBMA) grafted polymer brushes attached to glass were fabricated in a three-step process involving surface initiated atom transfer radical polymerization. The surface properties of the coatings after subsequent fabrication steps were confirmed using ToF-SIMS and ellipsometry. Measurements of water contact angle and AFM revealed temperature-induced changes in the hydrophobicity and morphology of the coating. The glass transition temperatures (Tg) of the PBMA coatings with different thicknesses were determined from the AFM measurements. For the PBMA grafted brush coatings with thicknesses less than 62 nm, Tg increases sharply with increasing thickness. The PBMA grafted coatings of thickness equal to 86 nm and 43 nm as well as control glass substrates were used as substrates for culturing a urinary bladder cancer HTB-5 cell line. After 144 h of culturing, a well-developed monocellular layer may be observed on the PBMA coating of thickness equal to 86 nm. In turn, the cells incubated on thinner (43 nm) PBMA coatings as well as on a control glass sample only start to form a confluent layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA