Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 36: 100972, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32229097

RESUMEN

OBJECTIVE: Obesity is a major cause of morbidity and mortality. Few weight-reducing medications are available, and these have limited efficacy. Cushing's Syndrome (caused by elevated glucocorticoid levels) and obesity have similar metabolic features. Though circulating glucocorticoid levels are not elevated in obesity, tissue-specific glucocorticoid levels have been implicated in the development of the metabolic phenotype of obesity. Tissue glucocorticoid levels are regulated by 11ß-hydroxysteroid dehydrogenase type1 (11ßHSD1), which increases the local concentration of active glucocorticoids by the production of corticosterone from 11-dehydrocorticosterone. 11ßHSD1 is expressed in the hypothalamic arcuate nucleus (ARC), a major weight and appetite-regulating centre, and therefore represents a target for novel anti-obesity therapeutic agents. Thus, we sought to investigate the effect of chronic alterations of ARC corticosterone levels (mediated by 11ßHSD1) on food intake and body weight in adult male rats. METHODS: Recombinant adeno-associated virus particles bearing sense 11ßHSD1 (rAAV-S11ßHSD1) and small interfering 11ßHSD1 (rAAV-si11ßHSD1), respectively, were stereotactically injected into the ARC (bilaterally) of adult male Wistar rats. rAAV-GFP was injected into control groups of male Wistar rats. Food intake and body weight were measured three times a week for 70 days. Terminal brain, plasma and intrascapular brown adipose tissue (iBAT) samples were taken for measurement of mRNA expression and hormone levels. RESULTS: Compared to controls, rAAV-S11ßHSD1 injection resulted in higher ARC corticosterone levels, hyperphagia and increased weight gain. Conversely, rAAV-si11ßHSD1 injection (compared to controls) resulted in lower ARC corticosterone levels, higher iBAT uncoupling protein-1 mRNA expression and less weight gain despite similar food intake. CONCLUSIONS: Therefore ARC corticosterone, regulated by 11ßHSD1, may play a role in food intake and body weight regulation. These data have important implications for the development of centrally-acting 11ßHSD1 inhibitors, which are currently being developed for the treatment of obesity, metabolic disorders, and other conditions.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Corticosterona/farmacología , Ingestión de Alimentos/efectos de los fármacos , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/fisiología , Tejido Adiposo Pardo/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Corticosterona/metabolismo , Ingestión de Alimentos/fisiología , Masculino , Obesidad , Ratas , Ratas Wistar , Proteína Desacopladora 1/metabolismo , Aumento de Peso
2.
Neuropharmacology ; 73: 348-58, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23748096

RESUMEN

Lisdexamfetamine dimesylate, which consists of L-lysine covalently bound to D-amfetamine, is the first prodrug for treating ADHD. Its metabolic conversion to yield D-amfetamine by rate-limited, enzymatic hydrolysis is unusual because it is performed by peptidases associated with red blood cells. Other stimulants shown to be effective in managing ADHD include D-amfetamine, methylphenidate and modafinil. All have the potential for misuse or recreational abuse. The discriminative and reinforcing effects of these compounds were determined in rats using a 2-choice, D-amfetamine (0.5 mg/kg, i.p.)-cued drug-discrimination test, and by substitution for intravenous cocaine in self-administration. Lisdexamfetamine (0.5-1.5 mg/kg [D-amfetamine base], p.o.) generalised to saline when tested 15 min post-dosing, but dose-dependently generalised to d-amfetamine at 60 min. At 120 min, its D-amfetamine-like effects were substantially diminished. At 15 min, methylphenidate (3.0-10 mg/kg, p.o.) and D-amfetamine (0.1-1.5 mg/kg, p.o.) dose-dependently generalised to the intraperitoneal D-amfetamine cue. Switching to the intraperitoneal route reduced the interval required for lisdexamfetamine to be recognised as D-amfetamine-like, but did not alter its potency. Switching to intraperitoneal injection increased the potency of methylphenidate and D-amfetamine by 3.4× and 2.2×, respectively. Modafinil (50-200 mg/kg, i.p.) generalised partially, but not fully, to d-amfetamine. Methylphenidate (0.1, 0.3, 1.0 mg/kg/injection, i.v.) maintained robust self-administration at the 2 highest doses. Neither lisdexamfetamine (0.05, 0.15 or 0.5 mg/kg/injection [D-amfetamine base], i.v.) nor modafinil (0.166, 0.498 or 1.66 mg/kg/injection, i.v.) served as reinforcers. The results reveal important differences between the profiles of these stimulants. Lisdexamfetamine did not serve as a positive reinforcer in cocaine-trained rats, and although it generalised fully to D-amfetamine, its discriminative effects were markedly influenced by its unusual pharmacokinetics.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Dextroanfetamina/farmacología , Discriminación en Psicología/efectos de los fármacos , Metilfenidato/farmacología , Refuerzo en Psicología , Animales , Cocaína/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Femenino , Dimesilato de Lisdexanfetamina , Modafinilo , Ratas , Autoadministración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA