Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(12): 16046-16054, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36926807

RESUMEN

Photopolymer additive manufacturing has become the subject of widespread interest in recent years due to its capacity to enable fabrication of difficult geometries that are impossible to build with traditional manufacturing methods. The flammability of photopolymer resin materials and the lattice structures enabled by 3D printing is a barrier to widespread adoption that has not yet been adequately addressed. Here, a water-based nanobrick wall coating is deposited on 3D printed parts with simple (i.e., dense solid) or complex (i.e., lattice) geometries. When subject to flammability testing, the printed parts exhibit no melt dripping and a propensity toward failure at the print layer interfaces. Moving from a simple solid geometry to a latticed geometry leads to reduced time to failure during flammability testing. For nonlatticed parts, the coating provides negligible improvement in fire resistance, but coating of the latticed structures significantly increases time to failure by up to ≈340% compared to the uncoated lattice. The synergistic effect of coating and latticing is attributed to the lattice structures' increased surface area to volume ratio, allowing for an increased coating:photopolymer ratio and the ability of the lattice to better accommodate thermal expansion strains. Overall, nanobrick wall coated lattices can serve as metamaterials to increase applications of polymer additive manufacturing in extreme environments.

2.
ACS Omega ; 4(20): 18668-18676, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31737827

RESUMEN

We have investigated adsorption-induced deformation in graphene oxide framework materials (GOFs) using neutron diffraction at sample pressures up to 140 bar. GOFs, made by the solvothermal reaction of graphite oxide and benzene-1,4-diboronic acid, are a suitable candidate for deformation studies due to their narrow (∼1 nm), monodispersed, slit-shaped pores whose width can be measured by diffraction techniques. We have observed, in situ, a monotonic expansion of the slit width with increasing pressure upon adsorption of xenon, methane, and hydrogen under supercritical conditions. The expansion of ∼4% observed for xenon at a pressure of 48 bar is the largest deformation yet reported for supercritical adsorption on a carbonaceous material. We find that the expansion of the three gases can be mapped onto a common curve based solely on their Lennard-Jones parameters, in a manner similar to a law of corresponding states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA