Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2402688, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258393

RESUMEN

Antigen delivery via respiratory mucosal surfaces is an interesting needle-free option for vaccination. Nonetheless, it demands for the design of especially tailored formulations. Here, lipid/poly(lactic-co-glycolic) acid (PLGA) hybrid nanoparticles (hNPs) for the combined delivery of an antigen, ovalbumin (Ova), and an adjuvant, synthetic unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG) motifs, is developed. A panel of Ova/CpG-loaded lipid@PLGA hNPs with tunable size and surface is attained by exploiting two lipid moieties, 1,2 distearoil-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) and monophosphoryl lipid A (MPLA), with or without polyethyleneimine (PEI). It is gained insights on the lipid@PLGA hNPs through a combination of techniques to analytically determine the specific moiety on the surface, the spatial distribution of the components and the internal structure of the nanoplatforms. The collected results suggest that PEI plays a role of paramount importance not only in promoting in vitro antigen escape from lysosomes and enhancing antigen cross-presentation, but also in determining the arrangement of the moieties in the final architecture of the hNPs. Though multicomponent PEI-engineered lipid@PLGA hNPs turn out as a viable strategy for delivery of antigens and adjuvant to the respiratory mucosa, tunable nanoparticle features are achievable only through the optimal selection of the components and their relative amounts.

2.
Pharmaceutics ; 16(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38543241

RESUMEN

Nowadays, the interest in research towards the local administration of drugs via the inhalation route is growing as it enables the direct targeting of the lung tissue, at the same time reducing systemic side effects. This is of great significance in the era of nucleic acid therapeutics and personalized medicine for the local treatment of severe lung diseases. However, the success of any inhalation therapy is driven by a delicate interplay of factors, such as the physiochemical profile of the payload, formulation, inhalation device, aerodynamic properties, and interaction with the lung fluids. The development of drug delivery systems tailored to the needs of this administration route is central to its success and to revolutionize the treatment of respiratory diseases. With this review, we aim to provide an up-to-date overview of advances in the development of nanoparticulate carriers for drug delivery to the lung tissue, with special regard concerning lipid and polymer-based nanocarriers (NCs). Starting from the biological barriers that the anatomical structure of the lung imposes, and that need to be overcome, the current strategies to achieve efficient lung delivery and the best support for the success of NCs for inhalation are highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA