Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Gels ; 8(9)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36135294

RESUMEN

Craniospinal irradiation (CSI) is a complex radiation technique employed to treat patients with primitive neuroectodermal tumors such as medulloblastoma or germinative brain tumors with the risk of leptomeningeal spread. In adults, this technique poses a technically challenging planning process because of the complex shape and length of the target volume. Thus, it requires multiple fields and different isocenters to guarantee the primary-tumor dose delivery. Recently, some authors have proposed the use IMRT technique for this planning with the possibility of overlapping adjacent fields. The high-dose delivery complexity demands three-dimensional dosimetry (3DD) to verify this irradiation procedure and motivated this study. We used an optical CT and a radiochromic Fricke-xylenol-orange gel with the addition of formaldehyde (FXO-f) to evaluate the doses delivered at the field junction region of this treatment. We found 96.91% as the mean passing rate using the gamma analysis with 3%/2 mm criteria at the junction region. However, the concentration of fail points in a determined region called attention to this evaluation, indicating the advantages of employing a 3DD technique in complex dose-distribution verifications.

3.
Int J Radiat Biol ; 97(2): 120-125, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33164596

RESUMEN

BACKGROUND: Recently, low dose radiotherapy delivered to the whole lung has been proposed as treatment for the pneumonia due to COVID-19. Although there is biological plausibility for its use, the evidence supporting its effectiveness is scarce, and the risks associated with it may be significant. Thus, based on a virtual case simulation, we estimated the risks of radiation-induced cancer (RIC) and cardiac disease. METHODS: Lifetime attributable risks (LAR) of RIC were calculated for the lung, liver, esophagus, and breast of female patients. The cardiovascular risk of exposure-induced death (REID) due to ischemic heart disease was also calculated. The doses received by the organs involved in the treatment were obtained from a simulation of conformal radiotherapy (RT) treatment, delivering a dose of 0.5 Gy-1.5 Gy to the lungs. We considered a LAR and REID <1% as acceptable, 1-2% cautionary, and >2% unacceptable. RESULTS: The lung was at the highest risk for RIC (absolute LAR below 5200 cases/100,000 and 2250 cases/100,000 for women and men, respectively). For women, the breast had the second-highest LAR, especially for young women. The liver and esophagus had LARs below 700/100,000 for both sexes, with a higher incidence of esophageal cancer in women and liver cancer in men. Regarding the LAR cutoff, we observed an unacceptable or cautionary LAR for lung cancer in all women and men <60 years with an RT dose >1 Gy. LAR for lung cancer with an RT dose of 1 Gy was cautionary for women >60 years of age and men <40 years of age. No LAR estimation was unacceptable for the RT dose ≤0.7 Gy in all groups irrespective of sex or age at exposure. Only 0.5 Gy had an acceptable REID. CONCLUSIONS: A RT dose ≤0.5 Gy provides an acceptable LAR estimate (≤1%) for RIC and REID, irrespective of sex and age. The current ongoing trials should initially use doses ≤0.5 Gy to maintain the risks at an acceptable level and include only patients who fail or do not have any other treatment option.


Asunto(s)
COVID-19/radioterapia , Pulmón/efectos de la radiación , Isquemia Miocárdica/etiología , Neoplasias Inducidas por Radiación/etiología , Dosis de Radiación , Femenino , Humanos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Radioterapia Conformacional/efectos adversos , Medición de Riesgo , Interfaz Usuario-Computador
4.
Res. Biomed. Eng. (Online) ; 32(4): 337-346, Oct.-Dec. 2016. tab, graf
Artículo en Inglés | LILACS | ID: biblio-842474

RESUMEN

Abstract Introduction Magneto-motive ultrasound (MMUS) combines magnetism and ultrasound (US) to detect magnetic nanoparticles in soft tissues. One type of MMUS called shear-wave dispersion magneto-motive ultrasound (SDMMUS) analyzes magnetically induced shear waves (SW) to quantify the elasticity and viscosity of the medium. The lack of an established presets or protocols for pre-clinical and clinical studies currently limits the use of MMUS techniques in the clinical setting. Methods This paper proposes a platform to acquire, process, and analyze MMUS and SDMMUS data integrated with a clinical ultrasound equipment. For this purpose, we developed an easy-to-use graphical user interface, written in C++/Qt4, to create an MMUS pulse sequence and collect the ultrasonic data. We designed a graphic interface written in MATLAB to process, display, and analyze the MMUS images. To exemplify how useful the platform is, we conducted two experiments, namely (i) MMUS imaging to detect magnetic particles in the stomach of a rat, and (ii) SDMMUS to estimate the viscoelasticity of a tissue-mimicking phantom containing a spherical target of ferrite. Results The developed software proved to be an easy-to-use platform to automate the acquisition of MMUS/SDMMUS data and image processing. In an in vivo experiment, the MMUS technique detected an area of 6.32 ± 1.32 mm2 where magnetic particles were heterogeneously distributed in the stomach of the rat. The SDMMUS method gave elasticity and viscosity values of 5.05 ± 0.18 kPa and 2.01 ± 0.09 Pa.s, respectively, for a tissue-mimicking phantom. Conclusion Implementation of an MMUS platform with addressed presets and protocols provides a step toward the clinical implementation of MMUS imaging equipment. This platform may help to localize magnetic particles and quantify the elasticity and viscosity of soft tissues, paving a way for its use in pre-clinical and clinical studies.

5.
Artículo en Inglés | MEDLINE | ID: mdl-26670853

RESUMEN

Several methods have been developed over the last several years to analyze the mechanical properties of soft tissue. Elastography, for example, was proposed to evaluate soft tissue stiffness in an attempt to reduce the need for invasive procedures, such as breast biopsies; however, its qualitative nature and the fact that it is operator-dependent have proven to be limitations of the technique. Quantitative shearwave- based techniques have been proposed to obtain information about tissue stiffness independent of the operator. This paper describes shear wave dispersion magnetomotive ultrasound (SDMMUS), a new shear-wave-based method in which a viscoelastic medium labeled with iron oxide nanoparticles is displaced by an external tone burst magnetic field. As in magnetomotive ultrasound (MMUS), SDMMUS uses ultrasound to detect internal mechanical vibrations induced by the interaction between a magnetic field and magnetic nanoparticles. These vibrations generated shear waves that were evaluated to estimate the viscoelastic properties of tissue-mimicking phantoms. These phantoms were manufactured with different concentrations of gelatin and labeled with iron oxide nanoparticles. The elasticity and viscosity obtained with SDMMUS agreed well with the results obtained by traditional ultrasound-based transient elastography.


Asunto(s)
Módulo de Elasticidad/fisiología , Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Sistemas Microelectromecánicos/métodos , Resistencia al Corte/fisiología , Viscosidad , Biomimética/instrumentación , Diagnóstico por Imagen de Elasticidad/instrumentación , Humanos , Aumento de la Imagen/métodos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estrés Mecánico
6.
Artículo en Inglés | MEDLINE | ID: mdl-24658731

RESUMEN

Ultrasound, magnetic fields, and optical techniques have been explored for clinical diagnosis and therapy. However, these techniques have limitations. In this study, we constructed and characterized a transducer to magnetically and ultrasonically investigate samples labeled with magnetic particles. The transducer is a hybrid system consisting of an ac biosusceptometer (ACB) and an ultrasonic transducer. The basic operation principle consisted of measuring the magnetization and microvibrations of ferromagnetic particles (37 and 70 µm) mixed in yogurt and excited by an external alternating magnetic field generated by the ACB's excitation coils. The vibration of the ferromagnetic particles was measured in phantoms using a Doppler ultrasonic transducer; we verified the sensitivity to detecting the vibrations at low concentrations of ferromagnetic material (~1%). The responses of the susceptometer and Doppler ultrasound linearly depended on the voltage level applied to the magnetizing coils at low ferromagnetic particle concentrations (⩽ 5%). We also conducted a repeatability test on the prototype, which indicated a deviation of 0.94% and 0.25% in the Doppler and susceptometric measurements, respectively. We can conclude that the hybrid transducer technique has potential clinical applications.


Asunto(s)
Campos Magnéticos , Magnetometría/instrumentación , Soluciones/química , Transductores , Ultrasonografía/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA