Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 113 Pt 24: 4399-411, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11082033

RESUMEN

In the animal life cycle, the earliest manifestations of programmed cell death (PCD) can already be seen during embryogenesis. The aim of this work was to determine if PCD is also involved in the elimination of certain cells during plant embryogenesis. We used a model system of Norway spruce somatic embryogenesis, which represents a multistep developmental pathway with two broad phases. The first phase is represented by proliferating proembryogenic masses (PEMs). The second phase encompasses development of somatic embryos, which arise from PEMs and proceed through the same sequence of stages as described for their zygotic counterparts. Here we demonstrate two successive waves of PCD, which are implicated in the transition from PEMs to somatic embryos and in correct embryonic pattern formation, respectively. The first wave of PCD is responsible for the degradation of PEMs when they give rise to somatic embryos. We show that PCD in PEM cells and embryo formation are closely interlinked processes, both stimulated upon withdrawal or partial depletion of auxins and cytokinins. The second wave of PCD eliminates terminally differentiated embryo-suspensor cells during early embryogeny. During the dismantling phase of PCD, PEM and embryo-suspensor cells exhibit progressive autolysis, resulting in the formation of a large central vacuole. Autolytic degradation of the cytoplasm is accompanied by lobing and budding-like segmentation of the nucleus. Nuclear DNA undergoes fragmentation into both large fragments of about 50 kb and multiples of approximately 180 bp. The tonoplast rupture is delayed until lysis of the cytoplasm and organelles, including the nucleus, is almost complete. The protoplasm then disappears, leaving a cellular corpse represented by only the cell wall. This pathway of cell dismantling suggests overlapping of apoptotic and autophagic types of PCD during somatic embryogenesis in Norway spruce.


Asunto(s)
Apoptosis , Árboles , Fragmentación del ADN , ADN de Plantas , Árboles/embriología , Árboles/genética
2.
Plant Cell Rep ; 19(9): 899-903, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30754927

RESUMEN

The bar gene conferring resistance to the herbicide Basta (containing phosphinothricin) was transferred to embryogenic cultures of Picea abies by particle bombardment and transformants were selected on Basta medium. In total, 83 9-month-old transgenic plants of Picea abies from six transformed sublines were analysed for continued tolerance to Basta. PCR analysis showed that the bar gene was present in all transformed plants but not in the control plants. Northern blot analysis showed differences in expression level among plants from the same subline as well as among sublines. A simple biotest for screening for Basta tolerance based on the colour change of detached needles induced by Basta was developed. The tolerance to Basta varied among the plants from different sublines. Needles from four of the sublines were resistant to 100 mg l-1 phosphinothricin, a concentration inducing yellowing in control needles, while plants from the other two sublines were on average two to four times as resistant as untransformed control plants. The biotest enables rapid semi-quantitative monitoring for continued transgene expression in long-lived tree species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA