Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Digit Health ; 4: 1025086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532611

RESUMEN

Poor lifestyle leads potentially to chronic diseases and low-grade physical and mental fitness. However, ahead of time, we can measure and analyze multiple aspects of physical and mental health, such as body parameters, health risk factors, degrees of motivation, and the overall willingness to change the current lifestyle. In conjunction with data representing human brain activity, we can obtain and identify human health problems resulting from a long-term lifestyle more precisely and, where appropriate, improve the quality and length of human life. Currently, brain and physical health-related data are not commonly collected and evaluated together. However, doing that is supposed to be an interesting and viable concept, especially when followed by a more detailed definition and description of their whole processing lifecycle. Moreover, when best practices are used to store, annotate, analyze, and evaluate such data collections, the necessary infrastructure development and more intense cooperation among scientific teams and laboratories are facilitated. This approach also improves the reproducibility of experimental work. As a result, large collections of physical and brain health-related data could provide a robust basis for better interpretation of a person's overall health. This work aims to overview and reflect some best practices used within global communities to ensure the reproducibility of experiments, collected datasets and related workflows. These best practices concern, e.g., data lifecycle models, FAIR principles, and definitions and implementations of terminologies and ontologies. Then, an example of how an automated workflow system could be created to support the collection, annotation, storage, analysis, and publication of findings is shown. The Body in Numbers pilot system, also utilizing software engineering best practices, was developed to implement the concept of such an automated workflow system. It is unique just due to the combination of the processing and evaluation of physical and brain (electrophysiological) data. Its implementation is explored in greater detail, and opportunities to use the gained findings and results throughout various application domains are discussed.

2.
Zootaxa ; 4780(3): zootaxa.4780.3.7, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33056516

RESUMEN

In this study, we describe a new species of the click-beetle genus Lacon Laporte, 1838 from Cyprus, and provide brief data on its ecology. Lacon cyprius sp. nov. is morphologically similar to L. punctatus (Herbst, 1779) but differs from the latter in the body surface and shapes of median antennomeres, pronotum, male tarsi, and genitalia. This is the first known Lacon species with an elongate projection ventrally on the pro- and mesotarsomere III. Additionally, we provide an identification key to Lacon species in Cyprus.


Asunto(s)
Escarabajos , Distribución Animal , Animales , Chipre , Masculino
3.
Data Brief ; 17: 469-511, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29876420

RESUMEN

Smoking, excessive drinking, overeating and physical inactivity are well-established risk factors decreasing human physical performance. Moreover, epidemiological work has identified modifiable lifestyle factors, such as poor diet and physical and cognitive inactivity that are associated with the risk of reduced cognitive performance. Definition, collection and annotation of human reaction times and suitable health related data and metadata provides researchers with a necessary source for further analysis of human physical and cognitive performance. The collection of human reaction times and supporting health related data was obtained from two groups comprising together 349 people of all ages - the visitors of the Days of Science and Technology 2016 held on the Pilsen central square and members of the Mensa Czech Republic visiting the neuroinformatics lab at the University of West Bohemia. Each provided dataset contains a complete or partial set of data obtained from the following measurements: hands and legs reaction times, color vision, spirometry, electrocardiography, blood pressure, blood glucose, body proportions and flexibility. It also provides a sufficient set of metadata (age, gender and summary of the participant's current life style and health) to allow researchers to perform further analysis. This article has two main aims. The first aim is to provide a well annotated collection of human reaction times and health related data that is suitable for further analysis of lifestyle and human cognitive and physical performance. This data collection is complemented with a preliminarily statistical evaluation. The second aim is to present a procedure of efficient acquisition of human reaction times and supporting health related data in non-lab and lab conditions.

4.
Gigascience ; 6(4): 1-6, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28327918

RESUMEN

Background: Developmental coordination disorder (DCD) is described as a motor skill disorder characterized by a marked impairment in the development of motor coordination abilities that significantly interferes with performance of daily activities and/or academic achievement. Since some electrophysiological studies suggest differences between children with/without motor development problems, we prepared an experimental protocol and performed electrophysiological experiments with the aim of making a step toward a possible diagnosis of this disorder using the event-related potentials (ERP) technique. The second aim is to properly annotate the obtained raw data with relevant metadata and promote their long-term sustainability. Results: The data from 32 school children (16 with possible DCD and 16 in the control group) were collected. Each dataset contains raw electroencephalography (EEG) data in the BrainVision format and provides sufficient metadata (such as age, gender, results of the motor test, and hearing thresholds) to allow other researchers to perform analysis. For each experiment, the percentage of ERP trials damaged by blinking artifacts was estimated. Furthermore, ERP trials were averaged across different participants and conditions, and the resulting plots are included in the manuscript. This should help researchers to estimate the usability of individual datasets for analysis. Conclusions: The aim of the whole project is to find out if it is possible to make any conclusions about DCD from EEG data obtained. For the purpose of further analysis, the data were collected and annotated respecting the current outcomes of the International Neuroinformatics Coordinating Facility Program on Standards for Data Sharing, the Task Force on Electrophysiology, and the group developing the Ontology for Experimental Neurophysiology. The data with metadata are stored in the EEG/ERP Portal.


Asunto(s)
Trastornos de la Destreza Motora/diagnóstico , Estimulación Acústica , Niño , Comorbilidad , Simulación por Computador , Curaduría de Datos , Electroencefalografía , Potenciales Evocados , Femenino , Humanos , Masculino , Estimulación Luminosa , Carácter Cuantitativo Heredable , Tiempo de Reacción , Reproducibilidad de los Resultados , Programas Informáticos
5.
Front Neuroinform ; 8: 20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24639646

RESUMEN

As in other areas of experimental science, operation of electrophysiological laboratory, design and performance of electrophysiological experiments, collection, storage and sharing of experimental data and metadata, analysis and interpretation of these data, and publication of results are time consuming activities. If these activities are well organized and supported by a suitable infrastructure, work efficiency of researchers increases significantly. This article deals with the main concepts, design, and development of software and hardware infrastructure for research in electrophysiology. The described infrastructure has been primarily developed for the needs of neuroinformatics laboratory at the University of West Bohemia, the Czech Republic. However, from the beginning it has been also designed and developed to be open and applicable in laboratories that do similar research. After introducing the laboratory and the whole architectural concept the individual parts of the infrastructure are described. The central element of the software infrastructure is a web-based portal that enables community researchers to store, share, download and search data and metadata from electrophysiological experiments. The data model, domain ontology and usage of semantic web languages and technologies are described. Current data publication policy used in the portal is briefly introduced. The registration of the portal within Neuroscience Information Framework is described. Then the methods used for processing of electrophysiological signals are presented. The specific modifications of these methods introduced by laboratory researches are summarized; the methods are organized into a laboratory workflow. Other parts of the software infrastructure include mobile and offline solutions for data/metadata storing and a hardware stimulator communicating with an EEG amplifier and recording software.

6.
Gigascience ; 3(1): 35, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25671095

RESUMEN

BACKGROUND: The event-related potentials technique is widely used in cognitive neuroscience research. The P300 waveform has been explored in many research articles because of its wide applications, such as lie detection or brain-computer interfaces (BCI). However, very few datasets are publicly available. Therefore, most researchers use only their private datasets for their analysis. This leads to minimally comparable results, particularly in brain-computer research interfaces. Here we present electroencephalography/event-related potentials (EEG/ERP) data. The data were obtained from 20 healthy subjects and was acquired using an odd-ball hardware stimulator. The visual stimulation was based on a three-stimulus paradigm and included target, non-target and distracter stimuli. The data and collected metadata are shared in the EEG/ERP Portal. FINDINGS: The paper also describes the process and validation results of the presented data. The data were validated using two different methods. The first method evaluated the data by measuring the percentage of artifacts. The second method tested if the expectation of the experimental results was fulfilled (i.e., if the target trials contained the P300 component). The validation proved that most datasets were suitable for subsequent analysis. CONCLUSIONS: The presented datasets together with their metadata provide researchers with an opportunity to study the P300 component from different perspectives. Furthermore, they can be used for BCI research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA