Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 36(6): 624-38, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27003936

RESUMEN

The neocortex contains glutamatergic excitatory neurons and γ-aminobutyric acid (GABA)ergic inhibitory interneurons. Extensive studies have revealed substantial insights into excitatory neuron production. However, our knowledge of the generation of GABAergic interneurons remains limited. Here we show that periventricular blood vessels selectively influence neocortical interneuron progenitor behavior and neurogenesis. Distinct from those in the dorsal telencephalon, radial glial progenitors (RGPs) in the ventral telencephalon responsible for producing neocortical interneurons progressively grow radial glial fibers anchored to periventricular vessels. This progenitor-vessel association is robust and actively maintained as RGPs undergo interkinetic nuclear migration and divide at the ventricular zone surface. Disruption of this association by selective removal of INTEGRIN ß1 in RGPs leads to a decrease in progenitor division, a loss of PARVALBUMIN and SOMATOSTATIN-expressing interneurons, and defective synaptic inhibition in the neocortex. These results highlight a prominent interaction between RGPs and periventricular vessels important for proper production and function of neocortical interneurons.


Asunto(s)
Interneuronas/citología , Neocórtex/irrigación sanguínea , Neocórtex/embriología , Células-Madre Neurales/citología , Telencéfalo/irrigación sanguínea , Telencéfalo/embriología , Animales , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Edad Gestacional , Proteínas Fluorescentes Verdes/metabolismo , Integrina beta1/metabolismo , Interneuronas/metabolismo , Eminencia Media/irrigación sanguínea , Eminencia Media/embriología , Eminencia Media/metabolismo , Ratones , Ratones Transgénicos , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Parvalbúminas/metabolismo , Embarazo , Área Preóptica/irrigación sanguínea , Área Preóptica/embriología , Área Preóptica/metabolismo , Proteínas Recombinantes/metabolismo , Somatostatina/metabolismo , Telencéfalo/metabolismo
2.
Cell ; 157(7): 1552-64, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949968

RESUMEN

The hippocampus, as part of the cerebral cortex, is essential for memory formation and spatial navigation. Although it has been extensively studied, especially as a model system for neurophysiology, the cellular processes involved in constructing and organizing the hippocampus remain largely unclear. Here, we show that clonally related excitatory neurons in the developing hippocampus are progressively organized into discrete horizontal, but not vertical, clusters in the stratum pyramidale, as revealed by both cell-type-specific retroviral labeling and mosaic analysis with double markers (MADM). Moreover, distinct from those in the neocortex, sister excitatory neurons in the cornu ammonis 1 region of the hippocampus rarely develop electrical or chemical synapses with each other. Instead, they preferentially receive common synaptic input from nearby fast-spiking (FS), but not non-FS, interneurons and exhibit synchronous synaptic activity. These results suggest that shared inhibitory input may specify horizontally clustered sister excitatory neurons as functional units in the hippocampus.


Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Animales , Embrión de Mamíferos/citología , Técnicas Genéticas , Interneuronas , Ratones , Neuronas/fisiología , Coloración y Etiquetado/métodos , Sinapsis
3.
Front Cell Neurosci ; 7: 221, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24312011

RESUMEN

Inhibitory GABA (γ-aminobutyric acid)-ergic interneurons are a vital component of the neocortex responsible for shaping its output through a variety of inhibitions. Consisting of many flavors, interneuron subtypes are predominantly defined by their morphological, physiological, and neurochemical properties that help to determine their functional role within the neocortex. During development, these cells are born in the subpallium where they then tangentially migrate over long distances before being radially positioned to their final location in the cortical laminae. As development progresses into adolescence, these cells mature and form chemical and electrical connections with both glutamatergic excitatory neurons and other interneurons ultimately establishing the cortical network. The production, migration, and organization of these cells are determined by vast array of extrinsic and intrinsic factors that work in concert in order to assemble a proper functioning cortical inhibitory network. Failure of these cells to undergo these processes results in abnormal positioning and cortical function. In humans, this can bring about several neurological disorders including schizophrenia, epilepsy, and autism spectrum disorders. In this article, we will review previous literature that has revealed the framework for interneuron neurogenesis and migratory behavior as well as discuss recent findings that aim to elucidate the spatial and functional organization of interneurons within the neocortex.

4.
Nature ; 486(7401): 113-7, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22678291

RESUMEN

Radial glial cells are the primary neural progenitor cells in the developing neocortex. Consecutive asymmetric divisions of individual radial glial progenitor cells produce a number of sister excitatory neurons that migrate along the elongated radial glial fibre, resulting in the formation of ontogenetic columns. Moreover, sister excitatory neurons in ontogenetic columns preferentially develop specific chemical synapses with each other rather than with nearby non-siblings. Although these findings provide crucial insight into the emergence of functional columns in the neocortex, little is known about the basis of this lineage-dependent assembly of excitatory neuron microcircuits at single-cell resolution. Here we show that transient electrical coupling between radially aligned sister excitatory neurons regulates the subsequent formation of specific chemical synapses in the neocortex. Multiple-electrode whole-cell recordings showed that sister excitatory neurons preferentially form strong electrical coupling with each other rather than with adjacent non-sister excitatory neurons during early postnatal stages. This preferential coupling allows selective electrical communication between sister excitatory neurons, promoting their action potential generation and synchronous firing. Interestingly, although this electrical communication largely disappears before the appearance of chemical synapses, blockade of the electrical communication impairs the subsequent formation of specific chemical synapses between sister excitatory neurons in ontogenetic columns. These results suggest a strong link between lineage-dependent transient electrical coupling and the assembly of precise excitatory neuron microcircuits in the neocortex.


Asunto(s)
Linaje de la Célula , Conductividad Eléctrica , Sinapsis Eléctricas/fisiología , Uniones Comunicantes/metabolismo , Neocórtex/citología , Neuronas/citología , Neuronas/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Sinapsis Eléctricas/metabolismo , Uniones Comunicantes/efectos de los fármacos , Ácido Meclofenámico/farmacología , Ratones , Modelos Neurológicos , Neuronas/efectos de los fármacos , Transmisión Sináptica
5.
Science ; 334(6055): 480-6, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22034427

RESUMEN

The neocortex contains excitatory neurons and inhibitory interneurons. Clones of neocortical excitatory neurons originating from the same progenitor cell are spatially organized and contribute to the formation of functional microcircuits. In contrast, relatively little is known about the production and organization of neocortical inhibitory interneurons. We found that neocortical inhibitory interneurons were produced as spatially organized clonal units in the developing ventral telencephalon. Furthermore, clonally related interneurons did not randomly disperse but formed spatially isolated clusters in the neocortex. Individual clonal clusters consisting of interneurons expressing the same or distinct neurochemical markers exhibited clear vertical or horizontal organization. These results suggest that the lineage relationship plays a pivotal role in the organization of inhibitory interneurons in the neocortex.


Asunto(s)
Interneuronas/citología , Interneuronas/fisiología , Neocórtex/citología , Inhibición Neural , Células-Madre Neurales/citología , Neurogénesis , Telencéfalo/citología , Animales , Linaje de la Célula , Movimiento Celular , Células Clonales/citología , Células Clonales/fisiología , Técnicas de Sustitución del Gen , Ratones , Mitosis , Neocórtex/embriología , Células-Madre Neurales/fisiología , Neuroglía/citología , Neuroglía/fisiología , Área Preóptica/citología , Área Preóptica/embriología , Telencéfalo/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA