Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 215(Pt 6): 873-83, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22357581

RESUMEN

Most marine organisms make functional biomolecular materials that extend to varying degrees 'beyond their skins'. These materials are very diverse and include shells, spines, frustules, tubes, mucus trails, egg capsules and byssal threads, to mention a few. Because they are devoid of cells, these materials lack the dynamic maintenance afforded intra-organismic tissues and thus are usually assumed to be inherently more durable than their internalized counterparts. Recent advances in nanomechanics and submicron spectroscopic imaging have enabled the characterization of structure-property relationships in a variety of extra-organismic materials and provided important new insights about their adaptive functions and stability. Some structure-property relationships in byssal threads are described to show how available analytical methods can reveal hitherto unappreciated interdependences between these materials and their prevailing chemical, physical and ecological environments.


Asunto(s)
Organismos Acuáticos/química , Materiales Biocompatibles/química , Ambiente , Animales , Bivalvos/anatomía & histología , Relación Estructura-Actividad
2.
J R Soc Interface ; 4(12): 19-31, 2007 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-17015290

RESUMEN

Contrary to conventional wisdom, mineralization is not the only strategy evolved for the formation of hard, stiff materials. Indeed, the sclerotized mouthparts of marine invertebrates exhibit Young's modulus and hardness approaching 10 and 1 GPa, respectively, with little to no help from mineralization. Based on biochemical analyses, three of these mouthparts, the jaws of glycerid and nereid polychaetes and a squid beak, reveal a largely organic composition dominated by glycine- and histidine-rich proteins. Despite the well-known metal ion binding by the imidazole side-chain of histidine and the suggestion that this interaction provides mechanical support in nereid jaws, there is at present no universal molecular explanation for the relationship of histidine to mechanical properties in these sclerotized structures.


Asunto(s)
Densidad Ósea/fisiología , Invertebrados/fisiología , Calcificación de Dientes/fisiología , Diente/fisiología , Animales , Elasticidad , Dureza , Biología Marina , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA