Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 1816, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000700

RESUMEN

The lack of microbial genomes and isolates from the deep seabed means that very little is known about the ecology of this vast habitat. Here, we investigate energy and carbon acquisition strategies of microbial communities from three deep seabed petroleum seeps (3 km water depth) in the Eastern Gulf of Mexico. Shotgun metagenomic analysis reveals that each sediment harbors diverse communities of chemoheterotrophs and chemolithotrophs. We recovered 82 metagenome-assembled genomes affiliated with 21 different archaeal and bacterial phyla. Multiple genomes encode enzymes for anaerobic oxidation of aliphatic and aromatic compounds, including those of candidate phyla Aerophobetes, Aminicenantes, TA06 and Bathyarchaeota. Microbial interactions are predicted to be driven by acetate and molecular hydrogen. These findings are supported by sediment geochemistry, metabolomics, and thermodynamic modelling. Overall, we infer that deep-sea sediments experiencing thermogenic hydrocarbon inputs harbor phylogenetically and functionally diverse communities potentially sustained through anaerobic hydrocarbon, acetate and hydrogen metabolism.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Microbiota/fisiología , Petróleo/metabolismo , Acetatos/metabolismo , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Sedimentos Geológicos/química , Hidrocarburos/metabolismo , Hidrógeno/metabolismo , Metagenoma , Metagenómica/métodos , México , Interacciones Microbianas/fisiología
2.
ISME J ; 12(8): 1895-1906, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29599524

RESUMEN

Dormant endospores of thermophilic bacteria (thermospores) can be detected in cold marine sediments following high-temperature incubation. Thermospores in the cold seabed may be explained by a dispersal history originating in deep biosphere oil reservoir habitats where upward migration of petroleum fluids at hydrocarbon seeps transports viable cells into the overlying ocean. We assessed this deep-to-shallow dispersal hypothesis through geochemical and microbiological analyses of 111 marine sediments from the deep water Eastern Gulf of Mexico. GC-MS and fluorescence confirmed the unambiguous presence of thermogenic hydrocarbons in 71 of these locations, indicating seepage from deeply sourced petroleum in the subsurface. Heating each sediment to 50 °C followed by 16S rRNA gene sequencing revealed several thermospores with a cosmopolitan distribution throughout the study area, as well as thermospores that were more geographically restricted. Among the thermospores having a more limited distribution, 12 OTUs from eight different lineages were repeatedly detected in sediments containing thermogenic hydrocarbons. A subset of these were significantly correlated with hydrocarbons (p < 0.05) and most closely related to Clostridiales previously detected in oil reservoirs from around the world. This provides evidence of bacteria in the ocean being dispersed out of oil reservoirs, and suggests that specific thermospores may be used as model organisms for studying warm-to-cold transmigration in the deep sea.


Asunto(s)
Sedimentos Geológicos/microbiología , Esporas Bacterianas/aislamiento & purificación , Temperatura , Golfo de México , Hidrocarburos/análisis , Petróleo
3.
Proc Natl Acad Sci U S A ; 109(50): 20303-8, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-22454495

RESUMEN

To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals' ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.


Asunto(s)
Antozoos/efectos de los fármacos , Arrecifes de Coral , Contaminación por Petróleo/efectos adversos , Animales , Antozoos/clasificación , Antozoos/genética , Cromatografía de Gases , Sedimentos Geológicos/análisis , Golfo de México , Datos de Secuencia Molecular , Contaminación por Petróleo/análisis , Filogenia , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
4.
PLoS One ; 5(8): e11967, 2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20700528

RESUMEN

Like hydrothermal vents along oceanic ridges, cold seeps are patchy and isolated ecosystems along continental margins, extending from bathyal to abyssal depths. The Atlantic Equatorial Belt (AEB), from the Gulf of Mexico to the Gulf of Guinea, was one focus of the Census of Marine Life ChEss (Chemosynthetic Ecosystems) program to study biogeography of seep and vent fauna. We present a review and analysis of collections from five seep regions along the AEB: the Gulf of Mexico where extensive faunal sampling has been conducted from 400 to 3300 m, the Barbados accretionary prism, the Blake ridge diapir, and in the Eastern Atlantic from the Congo and Gabon margins and the recently explored Nigeria margin. Of the 72 taxa identified at the species level, a total of 9 species or species complexes are identified as amphi-Atlantic. Similarity analyses based on both Bray Curtis and Hellinger distances among 9 faunal collections, and principal component analysis based on presence/absence of megafauna species at these sites, suggest that within the AEB seep megafauna community structure is influenced primarily by depth rather than by geographic distance. Depth segregation is observed between 1000 and 2000 m, with the middle slope sites either grouped with those deeper than 2000 m or with the shallower sites. The highest level of community similarity was found between the seeps of the Florida escarpment and Congo margin. In the western Atlantic, the highest degree of similarity is observed between the shallowest sites of the Barbados prism and of the Louisiana slope. The high number of amphi-atlantic cold-seep species that do not cluster according to biogeographic regions, and the importance of depth in structuring AEB cold-seep communities are the major conclusions of this study. The hydrothermal vent sites along the Mid Atlantic Ridge (MAR) did not appear as "stepping stones" for dispersal of the AEB seep fauna, however, the south MAR and off axis regions should be further explored to more fully test this hypothesis.


Asunto(s)
Frío , Ecosistema , Agua de Mar , Animales , Océano Atlántico , Biodiversidad , Clasificación , Guinea , México
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA