Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 9(2)2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27136566

RESUMEN

Progeroid syndromes show features of accelerated ageing and are used as models for human ageing, of which Werner syndrome (WS) is one of the most widely studied. WS fibroblasts show accelerated senescence that may result from p38 MAP kinase activation since it is prevented by the p38 inhibitor SB203580. Thus, small molecule inhibition of p38-signalling may be a therapeutic strategy for WS. To develop this approach issues such as the in vivo toxicity and kinase selectivity of existing p38 inhibitors need to be addressed, so as to strengthen the evidence that p38 itself plays a critical role in mediating the effect of SB203580, and to find an inhibitor suitable for in vivo use. In this work we used a panel of different p38 inhibitors selected for: (1) having been used successfully in vivo in either animal models or human clinical trials; (2) different modes of binding to p38; and (3) different off-target kinase specificity profiles, in order to critically address the role of p38 in the premature senescence seen in WS cells. Our findings confirmed the involvement of p38 in accelerated cell senescence and identified p38 inhibitors suitable for in vivo use in WS, with BIRB 796 the most effective.

2.
Biogerontology ; 17(2): 305-15, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26400758

RESUMEN

Senescent cells show an altered secretome profile termed the senescence-associated secretory phenotype (SASP). There is an increasing body of evidence that suggests that the accumulation of SASP-positive senescent cells in humans is partially causal in the observed shift to a low-level pro-inflammatory state in aged individuals. This in turn suggests the SASP as a possible therapeutic target to ameliorate inflammatory conditions in the elderly, and thus a better understanding of the signalling pathways underlying the SASP are required. Prior studies using the early generation p38 MAPK inhibitor SB203580 indicated that p38 signalling was required for the SASP. In this study, we extend these observations using two next-generation p38 inhibitors (UR-13756 and BIRB 796) that have markedly improved selectivity and specificity compared to SB203580, to strengthen the evidence that the SASP is p38-dependent in human fibroblasts. BIRB 796 has an efficacy and toxicity profile that has allowed it to reach Phase III clinical trials, suggesting its possible use to suppress the SASP in vivo. We also demonstrate for the first time a requirement for signalling through the p38 downstream MK2 kinase in the regulation of the SASP using two MK2 inhibitors. Finally, we demonstrate that a commercially-available multiplex cytokine assay technology can be used to detect SASP components in the conditioned medium of cultured fibroblasts from both young and elderly donors. This assay is a high-throughput, multiplex microtitre-based assay system that is highly sensitive, with very low sample requirements, allowing it to be used for low-volume human biological fluids. Our initial studies using existing multiplex plates form the basis for a "SASP signature" assay that could be used as a high-throughput system in a clinical study setting. Our findings therefore provide important steps towards the study of, and intervention in, the SASP in human ageing and age-related disease.


Asunto(s)
Senescencia Celular , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos
3.
Biogerontology ; 16(1): 43-51, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25214013

RESUMEN

Fibroblasts from the progeroid Nijmegen breakage syndrome that express a truncated version of the nibrin protein (NBN(p70)) undergo premature senescence and have an enlarged morphology with high levels of senescence-associated ß-galactosidase, although they do not have F-actin stress fibres. Growth of these fibroblasts in the continuous presence of p38 inhibitors resulted in a large increase in replicative capacity and changed the cellular morphology so that the cells resembled young normal fibroblasts. A similar effect was seen using an inhibitor of the p38 downstream effector kinase MK2. These data suggest that NBN(p70) expressing cells undergo a degree of stress-induced replicative senescence via p38/MK2 activation, potentially due to increased telomere dysfunction, that may play a role in the progeroid features seen in this syndrome.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Senescencia Celular/fisiología , Fibroblastos/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Síndrome de Nijmegen/patología , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proliferación Celular/fisiología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Fibroblastos/metabolismo , Humanos , Imidazoles/farmacología , Síndrome de Nijmegen/metabolismo , Fenotipo , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Telómero/fisiología
4.
Age (Dordr) ; 35(5): 1767-83, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23001818

RESUMEN

Rothmund-Thomson fibroblasts had replicative lifespans and growth rates within the range for normal fibroblasts; however, they show elevated levels of the stress-associated p38 MAP kinase, suggestive of stress during growth. Treatment with the p38 MAP kinase inhibitor SB203580 increased both lifespan and growth rate, as did reduction of oxidative stress using low oxygen in some strains. At replicative senescence p53, p21(WAF1) and p16(INK4A) levels were elevated, and abrogation of p53 using shRNA knockdown allowed the cells to bypass senescence. Ectopic expression of human telomerase allowed Rothmund-Thomson fibroblasts to bypass senescence. However, activated p38 was still present, and continuous growth for some telomerised clones required either a reduction in oxidative stress or SB203580 treatment. Overall, the evidence suggests that replicative senescence in Rothmund-Thomson cells resembles normal senescence in that it is telomere driven and p53 dependent. However, the lack of RECQL4 leads to enhanced levels of stress during cell growth that may lead to moderate levels of stress-induced premature senescence. As replicative senescence is believed to underlie human ageing, a moderate level of stress-induced premature senescence and p38 activity may play a role in the relatively mild ageing phenotype seen in Rothmund-Thomson.


Asunto(s)
Envejecimiento/genética , Regulación del Desarrollo de la Expresión Génica , ARN/genética , Síndrome Rothmund-Thomson/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Adolescente , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Imidazoles/farmacología , Immunoblotting , Microscopía Fluorescente , Estrés Oxidativo/genética , Fenotipo , Piridinas/farmacología , Síndrome Rothmund-Thomson/metabolismo , Síndrome Rothmund-Thomson/patología , Adulto Joven , Proteínas Quinasas p38 Activadas por Mitógenos/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/efectos de los fármacos
5.
Biogerontology ; 14(1): 47-62, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23112078

RESUMEN

Werner Syndrome (WS) is a human segmental progeria resulting from mutations in a DNA helicase. WS fibroblasts have a shortened replicative capacity, an aged appearance, and activated p38 MAPK, features that can be modulated by inhibition of the p38 pathway. Loss of the WRNp RecQ helicase has been shown to result in replicative stress, suggesting that a link between faulty DNA repair and stress-induced premature cellular senescence may lead to premature ageing in WS. Other progeroid syndromes that share overlapping pathophysiological features with WS also show defects in DNA processing, raising the possibility that faulty DNA repair, leading to replicative stress and premature cellular senescence, might be a more widespread feature of premature ageing syndromes. We therefore analysed replicative capacity, cellular morphology and p38 activation, and the effects of p38 inhibition, in fibroblasts from a range of progeroid syndromes. In general, populations of young fibroblasts from non-WS progeroid syndromes do not have a high level of cells with an enlarged morphology and F-actin stress fibres, unlike young WS cells, although this varies between strains. p38 activation and phosphorylated HSP27 levels generally correlate well with cellular morphology, and treatment with the p38 inhibitor SB203580 effects cellular morphology only in strains with enlarged cells and phosphorylated HSP27. For some syndromes fibroblast replicative capacity was within the normal range, whereas for others it was significantly shorter (e.g. HGPS and DKC). However, although in most cases SB203580 extended replicative capacity, with the exception of WS and DKC the magnitude of the effect was not significantly different from normal dermal fibroblasts. This suggests that stress-induced premature cellular senescence via p38 activation is restricted to a small subset of progeroid syndromes.


Asunto(s)
Senescencia Celular/fisiología , Síndrome de Werner/enzimología , Síndrome de Werner/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ataxia Telangiectasia/enzimología , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/patología , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Inestabilidad Genómica , Humanos , Imidazoles/farmacología , Progeria/enzimología , Progeria/genética , Progeria/patología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Estrés Fisiológico , Síndrome , Telomerasa/metabolismo , Síndrome de Werner/genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
6.
Aging Cell ; 11(2): 234-40, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22128747

RESUMEN

The human cornea is a tri-laminar structure composed of several cell types with substantial mitotic potential. Age-related changes in the cornea are associated with declining visual acuity and the onset of overt age-related corneal diseases. Corneal transplantation is commonly used to restore vision in patients with damaged or diseased corneas. However, the supply of donor tissue is limited, and thus there is considerable interest in the development of tissue-engineered alternatives. A major obstacle to these approaches is the short replicative lifespan of primary human corneal endothelial cells (HCEC). Accordingly, a comprehensive investigation of the signalling pathways and mechanisms underpinning proliferative lifespan and senescence in HCEC was undertaken. The effects of exogenous human telomerase reverse transcriptase expression, p53 knockdown, disruption of the pRb pathway by over-expression of CDK4 and reduced oxygen concentration on the lifespan of primary HCEC were evaluated. We provide proof-of-principle that forced expression of telomerase, when combined with either p53 knockdown or CDK4 over-expression, is sufficient to produce immortalized HCEC lines. The resultant cell lines express an HCEC-specific transcriptional fingerprint, and retain expression of the corneal endothelial temperature-sensitive potassium channel, suggesting that significant dedifferentiation does not occur as a result of these modes of immortalization. Exploiting these insights into proliferative lifespan barriers in HCEC will underpin the development of novel strategies for cell-based therapies in the human cornea.


Asunto(s)
Senescencia Celular , Células Endoteliales/metabolismo , Endotelio Corneal/metabolismo , Células Cultivadas , Quinasa 4 Dependiente de la Ciclina/metabolismo , Humanos , Estrés Oxidativo , Transcriptoma , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA