Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7491, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214990

RESUMEN

The practical implementation of many quantum algorithms known today is limited by the coherence time of the executing quantum hardware and quantum sampling noise. Here we present a machine learning algorithm, NISQRC, for qubit-based quantum systems that enables inference on temporal data over durations unconstrained by decoherence. NISQRC leverages mid-circuit measurements and deterministic reset operations to reduce circuit executions, while still maintaining an appropriate length persistent temporal memory in the quantum system, confirmed through the proposed Volterra Series analysis. This enables NISQRC to overcome not only limitations imposed by finite coherence, but also information scrambling in monitored circuits and sampling noise, problems that persist even in hypothetical fault-tolerant quantum computers that have yet to be realized. To validate our approach, we consider the channel equalization task to recover test signal symbols that are subject to a distorting channel. Through simulations and experiments on a 7-qubit quantum processor we demonstrate that NISQRC can recover arbitrarily long test signals, not limited by coherence time.

2.
Nat Phys ; 20(5): 815-821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799981

RESUMEN

Approaches to developing large-scale superconducting quantum processors must cope with the numerous microscopic degrees of freedom that are ubiquitous in solid-state devices. State-of-the-art superconducting qubits employ aluminium oxide (AlOx) tunnel Josephson junctions as the sources of nonlinearity necessary to perform quantum operations. Analyses of these junctions typically assume an idealized, purely sinusoidal current-phase relation. However, this relation is expected to hold only in the limit of vanishingly low-transparency channels in the AlOx barrier. Here we show that the standard current-phase relation fails to accurately describe the energy spectra of transmon artificial atoms across various samples and laboratories. Instead, a mesoscopic model of tunnelling through an inhomogeneous AlOx barrier predicts percent-level contributions from higher Josephson harmonics. By including these in the transmon Hamiltonian, we obtain orders of magnitude better agreement between the computed and measured energy spectra. The presence and impact of Josephson harmonics has important implications for developing AlOx-based quantum technologies including quantum computers and parametric amplifiers. As an example, we show that engineered Josephson harmonics can reduce the charge dispersion and associated errors in transmon qubits by an order of magnitude while preserving their anharmonicity.

3.
Nat Commun ; 10(1): 3154, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31316071

RESUMEN

Nonreciprocal microwave devices play critical roles in high-fidelity, quantum-nondemolition (QND) measurement schemes. They impose unidirectional routing of readout signals and protect the quantum systems from unwanted noise originated by the output chain. However, cryogenic circulators and isolators are disadvantageous in scalable superconducting architectures because they use magnetic materials and strong magnetic fields. Here, we realize an active isolator formed by coupling two nondegenerate Josephson mixers in an interferometric scheme and driving them with phase-shifted, same-frequency pumps. By incorporating our Josephson-based isolator into a superconducting qubit setup, we demonstrate fast, high-fidelity, QND measurements of the qubit while providing 20 dB of protection within a bandwidth of 10 MHz against amplified noise reflected off the Josephson amplifier in the output chain. A moderate reduction of 35% is observed in T2E when the Josephson-based isolator is turned on. Such a moderate degradation can be mitigated by minimizing heat dissipation in the pump lines.

4.
Quantum Sci Technol ; 3(2)2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29726551

RESUMEN

We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA