Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 110(8): e16221, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37598386

RESUMEN

PREMISE: Acmopyle (Podocarpaceae) comprises two extant species from Oceania that are physiologically restricted to ever-wet rainforests, a confirmed fossil record based on leaf adpressions and cuticles in Australia since the Paleocene, and a few uncertain reports from New Zealand, Antarctica, and South America. We investigated fossil specimens with Acmopyle affinities from the early Eocene Laguna del Hunco site in Patagonia, Argentina. METHODS: We studied 42 adpression leafy-shoot fossils and included them in a total evidence phylogenetic analysis. RESULTS: Acmopyle grayae sp. nov. is based on heterophyllous leafy shoots with three distinct leaf types. Among these, bilaterally flattened leaves uniquely preserve subparallel, linear features that we interpret as accessory transfusion tissue (ATT, an extra-venous water-conducting tissue). Some apical morphologies of A. grayae shoots are compatible with the early stages of ovuliferous cone development. Our phylogenetic analysis recovers the new species in a polytomy with the two extant Acmopyle species. We report several types of insect-herbivory damage. We also transfer Acmopyle engelhardti from the middle Eocene Río Pichileufú flora to Dacrycarpus engelhardti comb. nov. CONCLUSIONS: We confirm the biogeographically significant presence of the endangered West Pacific genus Acmopyle in Eocene Patagonia. Acmopyle is one of the most drought-intolerant genera in Podocarpaceae, possibly due to the high collapse risk of the ATT, and thus the new fossil species provides physiological evidence for the presence of an ever-wet rainforest environment at Laguna del Hunco during the Early Eocene Climatic Optimum.


Asunto(s)
Fósiles , Bosque Lluvioso , Filogenia , Argentina , Australia , Cycadopsida
2.
Glob Chang Biol ; 26(5): 3122-3133, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32053250

RESUMEN

Drought-related tree mortality is now a widespread phenomenon predicted to increase in magnitude with climate change. However, the patterns of which species and trees are most vulnerable to drought, and the underlying mechanisms have remained elusive, in part due to the lack of relevant data and difficulty of predicting the location of catastrophic drought years in advance. We used long-term demographic records and extensive databases of functional traits and distribution patterns to understand the responses of 20-53 species to an extreme drought in a seasonally dry tropical forest in Costa Rica, which occurred during the 2015 El Niño Southern Oscillation event. Overall, species-specific mortality rates during the drought ranged from 0% to 34%, and varied little as a function of tree size. By contrast, hydraulic safety margins correlated well with probability of mortality among species, while morphological or leaf economics spectrum traits did not. This firmly suggests hydraulic traits as targets for future research.


Asunto(s)
Sequías , El Niño Oscilación del Sur , Costa Rica , Bosques , Hojas de la Planta , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA